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Abstract
Parkinson’s disease (PD) is a progressive degenerative disorder
of the central nervous system characterized by motor and non-
motor symptoms. As the disease progresses, patients alternate
periods in which motor symptoms are mitigated due to medi-
cation intake (ON state) and periods with motor complications
(OFF state). The time that patients spend in the OFF condi-
tion is currently the main parameter employed to assess phar-
macological interventions and to evaluate the efficacy of differ-
ent active principles. In this work, we present a system that
combines automatic speech processing and deep learning tech-
niques to classify the medication state of PD patients by lever-
aging personal speech-based bio-markers. We devise a speaker-
dependent approach and investigate the relevance of different
acoustic-prosodic feature sets. Results show an accuracy of
90.54% in a test task with mixed speech and an accuracy of
95.27% in a semi-spontaneous speech task. Overall, the ex-
perimental assessment shows the potentials of this approach to-
wards the development of reliable, remote daily monitoring and
scheduling of medication intake of PD patients.
Index Terms: Parkinson’s Disease speech, ON-OFF medica-
tion state, automatic assessment

1. Introduction
Parkinson’s disease (PD) is a progressive degenerative disor-
der of the central nervous system characterized by motor and
non-motor symptoms. The cardinal motor signs of PD in-
clude the characteristic clinical picture of resting tremor, rigid-
ity, bradykinesia, and impairment of postural reflexes, while
non-motor symptoms include cognitive disorders, and sleep and
sensory abnormalities. Motor symptoms of PD influence also
the speech production of language. Dysarthria, which is char-
acterized by a weakness, paralysis, or lack of coordination in
the motor-speech system, is typically observed in PD patients
and affects respiration, phonation, articulation and prosody. As
a consequence, the main deficits of PD speech are loss of inten-
sity, monotony of pitch and loudness, reduced stress, inappro-
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priate silences, short rushes of speech, variable rate, imprecise
consonant articulation and harsh and breathy voice. Both mo-
tor symptoms and speech impairments slowly worsen during
the disease with a nonlinear progression. Patients in advanced
stages typically present more severe speech abnormalities, with
voice disorders and articulatory deficits being the most preva-
lent symptoms. At the final stage of the disease, articulation is
frequently the most impaired feature [1–3]. As the disease pro-
gresses, patient alternate periods in which motor symptoms are
mitigated due to medication intake (ON state), and periods with
motor complications (OFF state). The time that patients spend
in the OFF condition is currently the main parameter used to
assess pharmacological interventions.

In this scenario, it is of paramount importance to investi-
gate whether speech characteristics can be used as a bio-marker
to monitor and track ON-OFF conditions of PD patients. If this
would be possible, then speech cues may bring further insights
into the dynamics of the disease over time, not only by provid-
ing accurate information on medication states and alterations,
but also by investigating its correlation with motor fluctuations.
However, while the effects of dysarthria in PD have been deeply
investigated, both in drug-naive state and under pharmacolog-
ical treatment [4–9], it is still not clear whether speech anal-
ysis could be helpful to differentiate between ON-OFF states
induced by pharmacological intake. In fact, the clinical liter-
ature presents controversial results on the effect of Levodopa
on speech abilities [10–15], while no computational studies ad-
dressing this topic have been identified in the literature.

To the best of our knowledge, this is the first work that
investigates the problem of automatically identifying medica-
tion states of PD patients from speech. We propose a sys-
tem that combines speech processing and deep learning tech-
niques to perform automatic classification of the medication
state by leveraging personal speech-based bio-markers. We
devise a speaker-dependent experimental setup that uses the
FraLusoPark corpus [16]. This dataset contains recordings
from 74 native Portuguese PD patients performing several vocal
tasks, both in drug-naive state and under pharmacological treat-
ment. The results show that it is possible to classify ON-OFF
condition with an accuracy of 90.54% using speaker-dependent
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models. Moreover, it was found in previous work that the type
of vocal task has a relevant impact on the capability of au-
tomatic approaches to characterize speech impairments in PD
patients [6, 17, 18]. When we extend such a per-speech task
analysis to this work, we find that the accuracy of the system
improves to 95.27% on a semi-spontaneous storytelling task.
These results are of extreme relevance, not only because they
represent a first contribution to the automatic assessment of the
medication state of PD patients. They also confirm that it is pos-
sible to obtain reliable models using a relatively reduced amount
of patients’ speech data. Altogether, we consider that this is a
relevant achievement towards the development of reliable, per-
sonalized and non-invasive health solutions for the daily moni-
toring and scheduling of medication intake of PD patients. This
technology could be deployed at patients’ homes and remotely
provide the clinicians with constant, updated information.

The rest of this work is structured as follows: Section 2
introduces the relevant state of the art. In Section 3 and 4, we
present the dataset used in this study and a description of our
methodology. Experimental results are presented in Section 5
and the paper ends with conclusions in Section 6.

2. Related work
The effects of Levodopa treatment on speech abilities have
been analyzed considering different dimensions of voice qual-
ity. Several studies focused their attention on phonatory and
articulatory abilities. Goberman et al. [19] found small dif-
ferences between groups of patients before and after medica-
tion, which were pointing to phonatory improvements. Jacobi
et al. [20] analyzed the Vowel Articulation Index (VAI) in 10
participants of different languages, finding that VAI was not sig-
nificantly affected by pharmacological treatment. On the other
hand, Okada et al. [10] reported significantly expanded Vowel
Space Area (VSA) after Levodopa treatment of 21 PD patients,
contrarily to the findings by Poluha et al. [11] on a corpus of 10
subjects. Some authors shifted their attention towards the anal-
ysis of prosodic deviations. Using a reading task composed of
four complex sentences, Skodda et al. [12] analyzed intonation
and speech rate in a group of 138 patients. The authors found
significant changes from the first to the last sentence of the pas-
sage, but generally, no effect of Levodopa administration was
found on the reading of the entire task. In this respect, De Letter
et al. [13] found no differences in the speech rate of 25 patients
reading a text passage in OFF and ON states. Finally, when
investigating the effects of Levodopa on developmental stutter-
ing, Anderson et al. [14] reported an increase of disfluencies in
the spontaneous speech of 1 patient during the ON period. This
is in disagreement with the findings of Im et al. [15], which ex-
amined 51 patients while reading a standard passage. In fact,
the authors found an improvement of disfluency in the ON state
that was proportional to the severity of speech impairments pre-
sented in the OFF state. The discrepancies found in the stud-
ies described above may depend on many factors, like differ-
ent methodological approaches or the small number of samples
observed in some studies. Overall, it is rather consensual that
Dysarthria is considered to be responsive to treatments. Nev-
ertheless, there exists also the hypothesis that pharmacological
intake may induce additional speech deficits caused by side ef-
fects of the treatment itself [21].

While speech and language technologies may potentially
provide valuable contributions to the analysis of patients’ states,
to the best of our knowledge, this is the first study that inves-
tigates a computational approach to this problem. In this re-

Table 1: Duration by task and medication state of the FraLu-
soPark dataset (hh:mm:ss) after automatic pre-processing.

Task ON OFF
/a/ 00:31:22 00:35:22
MPT 00:39:22 00:38:24
DDK 00:32:36 00:30:50
Reading 10 words 00:10:34 00:09:52
Reading 10 sentences 00:18:24 00:17:56
Reading text 00:40:04 01:27:56
Reading prosodic sentences 01:22:21 00:41:08
Story telling 00:37:59 00:41:14
Conversation 02:40:38 02:51:21
Total 07:18:17 07:36:19

spect, our work brings the following contributions. First, it is
a fully-automatic method purely based on acoustic bio-markers
of speech. Second, we explore the use of deep architectures in
a challenging domain like the health area, characterized by rel-
atively constrained datasets with respect to the ones typically
used with these models. Third, by exploiting a relatively large
corpus composed of 74 PD patients performing several tasks,
we show that is possible to achieve reliable personalised mod-
els to identify ON-OFF medication states, particularly in semi-
spontaneous vocal production tasks.

3. Corpus description
The corpus used in this study is the FraLusoPark database [16],
which contains the recordings of 139 European Portuguese
speakers. The control group, composed of 65 healthy volun-
teers, is age-matched and sex-matched with the PD group, com-
posed of 74 subjects. The patient group contains 38 male with
an average age of 65 years (±11.9), and 37 female, with an av-
erage age of 70 (±8.5) years. Each patient was recorded twice
on the same day, OFF medication (i.e.: at least 12 hours after
withdrawal of all anti-Parkinsonian drugs), and ON medication
(i.e.: following at least 1 hour after the administration of the
usual medication). All the recordings where performed under
exactly the same environmental conditions.

Participants were required to perform 9 speech production
tasks with an increasing complexity in a fixed order: (1) three
repetitions of the sustained phonation of the vowel /a/, (2) two
repetitions of the maximum phonation time (vowel /a/ sustained
as long as possible), (3) oral diadochokinesia (repetition of the
pseudo-word pataka at a fast rate for 30 s.), (4-5) reading aloud
of 10 words and 10 sentences, (6) reading aloud of a short text
(”The North Wind and the Sun”), (7) reading aloud of a set
of sentences with specific prosodic properties, (8) storytelling
speech guided by visual stimuli, and (9) engaging in a spon-
taneous conversation for around three minutes. Table 1 shows
the duration of the corpus by task and medication state after
removal of pauses and therapists’ interventions.

4. Methodology
Our approach to the automatic classifcation of ON-OFF states
relies on three main stages. The first one deals with the auto-
matic removal of non-speech segments and therapists’ interven-
tions. Then, acoustic-prosodic markers are computed from the
clean speech signals. Finally, PD patients’ medication state is
modeled with deep neural networks.
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4.1. Pre-processing and segmentation

We describe here our automatic approach to remove speech seg-
ments corresponding to silent pauses and instructions of the
speech language therapists. Each audio file in this corpus cor-
responds to the continuous, unsegmented recording of a task.
In our previous work with this dataset [17], the recordings of
the control group were processed semi-automatically to gener-
ate segmentation annotations with information of speech/non-
speech segments and speaker (patient/clinician) turn. These
data are exploited to generate the same kind of annotations for
the Patient recordings, using a fully-automatic approach based
on speech/non-speech segmentation (SNS) followed by speaker
identification. The SNS segmentation is based on a simple finite
state machine encoding heuristic rules about the minimal seg-
ment duration and state-changing thresholds, and takes as in-
put the likelihoods provided by a bi-Gaussian model of the log-
energy distribution computed for each recording. In the speaker
identification step, we follow the classical GMM-MAP mod-
eling approach [22], in which a universal background model
(UBM) is first trained and then adapted to a target speaker us-
ing some enrolment data. In this case, we train the UBM using
all the speech segments in the control group recordings (07h
19m 27s) and a therapist model using the therapist speech seg-
ments in the control group recordings (07m and 40s). Finally,
for each speech segment in the Patient recordings, the therapist
vs. UBM likelihood ratio is computed and compared to a de-
cision threshold Θ. In this work, we are specially concerned
with the removal of the therapist’s speech segments, while, up
to some extent, we can afford to eliminate some data of patient’s
speech. For that reason, the decision threshold was empirically
set to minimize the therapist insertion errors according to ex-
periments conducted in the Control group recordings.

4.2. Feature extraction

After the removal of pauses and therapists’ interventions, all
the clean speech recordings are parameterized in a frame basis.
Three different feature sets were used in this work. The first two
sets, henceforth referred to as MFCC and MFCC+∆s, consist of
13 Mel-Frequency Cepstral coefficients (MFCC) in the former
case, augmented with the corresponding 13 delta coefficients in
the latter. These features were extracted with HTK [23] using a
window size of 25 ms and a window period of 10 ms. The third
feature set, referred to as eGeMAPS, consists of the 26 low-
level descriptors (LLD) of the eGeMAPS feature set [24]. This
is a compact set of acoustic-prosodic features, well-known for
their usefulness in a wide range of paralinguistic tasks. These
features were extracted with the openSMILE toolbox [25] us-
ing a frame period of 10 ms and window sizes of 20 and 60 ms
depending on the specific LLD [24]. The feature vectors are fi-
nally normalized (zero mean and unit variance) on a per-speaker
basis.

4.3. Medication state modeling

The task of assessing PD patients’ medication state (ON-OFF)
from their speech can be stated as a binary classification prob-
lem. In a preliminary phase, we experimented a simple model
like GMMs, which provided poor results. Thus, we use deep
neural networks (DNN) for assigning every input frame in the
patient’s utterance with a probability of that speech sample cor-
responding to either states ON or OFF. A final decision for the
whole utterance is obtained as the mean value of the individual
probabilities. One fundamental aspect in the definition of the

approach followed to model the medication state regards the
dependency of this task on the speakers’ personal characteris-
tics. This comes down to determining whether there exists a
set of acoustic-prosodic cues shared by speakers with different
gender, ages, and health conditions (including PD development
stage) that can be leveraged to develop robust models for this
task. Thus, we conducted a preliminary series of experiments
in a speaker-independent setup. Several machine learning tech-
niques (DNN and SVM) and feature types (MFCC, eGeMAPS,
i-vectors and X-vectors) were used to train speaker-independent
models that achieved limited performance results up to 65%
utterance-level accuracy. These results, along with the nature
of the task itself, justify the adoption of the speaker-dependent
approach that is presented in detail below.

4.3.1. Data partitioning

The pre-processed FraLusoPark dataset is divided into three dif-
ferent subsets for training, development (validation) and test
purposes. In a speaker-dependent approach, all these three sub-
sets contain recordings from all the 74 PD patients. Namely, we
divide the pre-processed dataset by speech tasks, as following:

• Train: MPT, DDK, Reading 10 words, Reading prosodic
sentences, and Conversation.

• Development: Reading 10 sentences.
• Test: /a/, Reading text, and Story telling.

The training set contains 740 files (10 files per patient, 5 ON
and 5 OFF) and 3983327 samples, which amounts to 55.6%
of the whole pre-processed dataset in terms of utterances. The
development set contains 148 files (2 per patient) and 217956
samples (11.1% of the dataset). The test set contains 444 files
(6 per patient) and 1166119 samples, (remaining 33.3% of the
dataset). On average, there are approximately 53800, 2900 and
15800 samples per speaker in these 3 subsets (around 9, 0.5
and 2.6 minutes of speech), respectively. Overall, the number
of samples corresponding to the ON and OFF states is well-
balanced (2629635 vs. 2737767), although we could observe
some notable differences for some speakers, specially in the
training subset.

4.3.2. Medication state classifiers

Different architectures of feedforward networks were assessed
for the goal of learning the relationships between input feature
vectors and ON-OFF medication states. Specifically, architec-
tures with 1 to 3 hidden layers with 32 to 512 nodes were val-
idated. ReLU and sigmoid activation functions are used in the
hidden and output layers, respectively. The learning rate α is
validated, whereas a moderate fixed batch size (32) is used to
limit the search space in the validation process. Also, differ-
ent input context sizes were assessed in our experiments (1, 5,
11, and 15 frames), together with the application of Principal
Component Analysis (PCA) for dimensionality reduction. The
selection of the optimal values for the free (hyper)parameters
was performed based on validation results using the develop-
ment subset. The final results are computed on the test subset.
All the results in this work are reported in terms of accuracy
(Acc) at a file/utterance-level.

In our speaker-dependent approach, the final system con-
sists of 74 individual models, one for each speaker. However,
they all share the same configuration (architecture and training
hyperparameters). The reason behind this is that just 2 speech
recordings from each patient are available for validation pur-
poses. Thus, validation on a per-speaker basis is not feasible.
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Table 2: Optimal model configurations and results (utterance-level Acc - %) for speaker-dependent medication state assessment.

Feature set #Coefficients Context Input dim. Architecture α Acc devel. Acc test
MFCC 13 15 195 256, 128, 32, 1 0.01 93.92 88.74
MFCC+∆s 26 11 286 256, 128, 1 0.01 93.24 89.86
eGeMAPS 23 15 345 512, 128, 1 0.001 95.95 90.54
MFCC+PCA 13 15 95 512, 128, 1 0.03 91.89 90.09
MFCC+∆s+PCA 26 11 85 128, 64, 1 0.03 91.89 89.41
eGeMAPS+PCA 23 15 70 128, 64, 1 0.03 96.62 87.84

Instead, the average accuracy on the validation subset across all
the patients is used to select the optimal global configuration
that is then used to train 74 individual DNNs, one for each pa-
tient. The DNN classifiers were trained on several GPUs using
TensorFlow [26].

Table 2 shows the optimal configuration for each of the six
parameterizations used in this work: the three sets described in
Section 4.2 with and without PCA. The number of coefficients
per speech frame are 13, 26 and 23 for MFCC, MFCC+∆s and
eGeMAPS, respectively. A context length of 15 frames was
found optimal for the MFCC- and eGeMAPS-based systems,
whereas the MFCC+∆s(+PCA) systems use a context of 11
frames. For the PCA-based systems, the input dimension cor-
responds to the number of principal components kept, which is
determinastically selected as the n largest eigenvalues that ex-
plain a 95% of the total variance in the original input space.

5. Experimental results and analysis
Table 2 shows the validation and test results (utterance-level ac-
curacies) of the DNN-based systems described above. These
results reveal that the medication condition (ON-OFF) of the
speakers can be inferred from the acoustic-prosodic informa-
tion in their speech by means of automatic speech processing
and machine learning procedures. The MFCC-based systems
achieve accuracies of 88.74% and 90.09% in the test set, while
the MFCC+∆s-based systems achieve comparable results of
89.86% and 89.41%. One reason to explain the competitive
results achieved by the MFCCs alone may be the use of a larger
input context size (15 frames), which compensates for the dy-
namic information provided by the delta MFCC features. The
eGeMAPS-based systems achieve accuracies of 90.54% and
87.84%. The use of PCA leads to better results for the MFCC-
based system, even with a substantial reduction in the dimen-
sionality (51.3%). For the MFCC+∆s and the eGeMAPS-based
systems the results are lower, however. We hypothesize that this
may be due to the extreme dimensionality reduction in these
two cases (70.3% and 79.7%, respectively) . Finally, it is worth
mentioning that the medication state is not equally assessed for
all the patients. Since all of them contribute the same number
of test utterances, the results in Table 2 coincide with the aver-
age per-speaker accuracies. The speaker variability, expressed
in terms of the standard deviation of the per-speaker accuracies,
ranges from 12.51 to 14.67.

The markedly different nature of the various speech tasks
in the test subset justifies a separate analysis of the results in
a per-task basis. Table 3 shows how the performances of the
six models depend on the speech task: phonation of the vowel
/a/, reading of a short text, and guided storytelling. The best re-
sults are achieved on the semi-spontaneous visually-guided sto-
rytelling task (accuracies between 92.57 and 95.27%), followed
by the reading of short text task (accuracies between 86.49 and
91.22%) and the /a/ task (accuracies around 83.78% to 89.19%).

It is specially remarkable the performance of the eGeMAPS on
the story telling task, with a 95.27% accuracy. As a conclusion,
the results shown in Table 3 point to the benefit of using natural,
(semi)spontaneous speech recordings for the automatic assess-
ment of PD patients medication state. These observations are
consistent with previous work on the relevance of speech tasks
for automatic detection of Parkinson’s disease [17]. Overall, the
results reported in this work have the potential to contribute to
opening new avenues for the automatic distant monitoring of
PD patients.

Table 3: Test results (utterance-level Acc - %) for speaker-
dependent medication state assessment by task.

Feature set /a/ Reading Story
text telling

MFCC 86.49 87.16 92.57
MFCC+∆s 85.14 91.22 93.24
eGeMAPS 89.19 87.16 95.27
MFCC+PCA 86.49 89.19 94.59
MFCC+∆s+PCA 85.14 89.19 93.92
eGeMAPS+PCA 83.78 86.49 93.24

6. Conclusions and future work
This work presents an approach that combines speech process-
ing and deep learning techniques to perform automatic clas-
sification of the medication state of PD patients by leverag-
ing personal speech-based bio-markers. We devise a speaker-
dependent approach and investigate the relevance of different
acoustic-prosodic feature sets. Test results show an accuracy of
90.54% in a mixed-speech task and a remarkable accuracy of
95.27% in a semi-spontaneous speech task. These results show
the potentials of this approach towards the development of per-
sonalized and reliable systems for a daily, remote monitoring
and scheduling of medication intake of PD patients.

Further work will pursue the acquisition of more speech
data to perform more exhaustive and relevant experimentation,
together with an analysis of how the proposed approach scales
to new and larger corpora. Presumably, this would also open
the door to new and more elaborated approaches using con-
volutional and/or recurrent neural networks, and to speaker-
independent approaches. We plan to continue investigating
that approach in combination with the use of speech embed-
dings (e.g., i-vectors and X-vectors) that may convey specific
information relevant to the medication state classification task.
Speaker-independent models may also serve as a good starting
point for the development of more powerful speaker-dependent
models by means of retraining them using speaker-specific
speech data.
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