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Abstract

A common assumption when collecting speech datasets is that
the accuracy of data labels strongly influences the accuracy
of speaker embedding models and verification systems trained
from these data. However, we show in experiments1 on the large
and diverse VoxCeleb2 dataset that this is not always the case:
Under four different labeling models (Split, Merge, Permute,
and Corrupt), we find that the impact on trained speaker em-
bedding models, as measured by the Equal Error Rate (EER) of
speaker verification, is mild (just a few percent absolute error
increase), except with very large amounts of noise (i.e., every
minibatch is almost completely corrupted). This suggests that
efforts to collect speech datasets might benefit more from en-
suring large size and diversity rather than meticulous labeling.
Index Terms: label noise, speaker verification, embeddings

1. Introduction
The state-of-the-art approach to speaker recognition, verifica-
tion, and diarization is based on speaker embeddings that map
utterances into an embedding space such that embedded utter-
ances from the same speaker are close together and embed-
ded utterances from different speakers are far apart. Embed-
ding models can be trained using a loss such as triplet [1]
or GE2E [2] that operates on sets of utterances spanning at
least two speakers. Alternatively, the embedding model can be
trained as a classification network on single utterances using a
softmax/cross-entropy loss [3, 4] to predict the speaker ID from
a fixed set of speakers; after training, the softmax layer is dis-
carded and a previous layer is used as the embedding.

To train accurate embedding models, large datasets con-
taining utterances from many different speakers are required.
Prominent examples include VoxCeleb [5, 6] and LibriSpeech
[7]; we have also recently published the BookTubeSpeech
dataset [8]. In order to ensure that the labels of these datasets
accurately reflect who spoke when, dataset collectors have em-
ployed various methods, including targeted YouTube keywords
for specific people, pre-trained speaker and face embeddings to
detect when two speakers are the same or when a single video
contains multiple people, and manual annotation. However, the
significant effort involved in labeling raises the question: How
much does the veracity of the data labels impact the accuracy of
downstream speaker embedding models? If the impact is small,
then speaker embedding models might be improved by training
on much larger datasets with only approximate labeling.

The concrete motivation for this paper is the following:
After we collected BookTubeSpeech [8] and used it to train a
speaker embedding model, we found that we achieved a better
speaker verification EER on the LibriSpeech test-clean dataset
[7] (0.0437 vs. 0.0565) when we used the entire dataset (38,707

1Code is available at: https://drive.google.com/
drive/folders/1q76CyY4EzkgAlqCKQy2cyrtHODtNXX95

videos) rather than just the 8,450 video subset whose labels en-
sured that they all contained distinct speakers. In other words,
when training with just the video IDs as noisy labels of speaker
IDs, there seemed to be no penalty in terms of downstream
speaker verification EER.

Contribution: In this paper we consider four different
types of label noise, and we conduct experiments to measure
their impact on speaker embedding models used to perform
speaker verification. By varying the amount and type of label
noise, we can better understand whether accurate labels are nec-
essary for training embedding models.

2. Related Work
Mitigation: Most of the previous research on the impact of la-
bel noise has focused on mitigating label noise to improve clas-
sification accuracy on images. Xiao et al. [9] proposed a proba-
bilistic model to infer the true labels from noisy labels for image
classification. Li et al. [10] developed a distillation method to
train convolutional neural networks when a known subset of the
training labels are noisy, but they did not investigate the impact
of the label noise on test accuracy. Zhang et al. [11] proposed
a generalized cross-entropy loss which can combat label noise.
Han et al. [12] devised a deep learning paradigm consisting of
two networks to filter out label noise for each other.

For the audio domain, much less research on label noise has
been conducted. Akiyama et al. [13] applied multitask learning,
semi-supervised learning, and ensemble methods to an audio
tagging task to overcome noisy data. Bekker et al. [14] pro-
posed an Expectation-Maximization algorithm to train neural
networks to be robust to noisy labels and tested it on TIMIT
[15] for phoneme classification.

Measurement: Rather than mitigating label noise, a few
papers systematically measure its impact on accuracy: Nettle-
ton et al. [16] conducted experiments on how data noise and la-
bel noise could affect shallow machine learning models (SVMs,
Naı̈ve Bayes, etc.). Rolnick et al. [17] explored how label noise
would affect deep neural networks and showed that, while deep
networks are robust to label noise, using larger datasets and a
larger minibatch size can help even more. However, these sur-
veys did not include speaker verification tasks.

The work most similar to ours is by Zheng et al. [18]. It
looked at how label noise affected trained x-vector embeddings
[3] for speaker verification and how effective were different reg-
ularization methods. They examined just a single type of noise
– permutation of the dataset labels. In contrast, our work con-
siders four different label noise models and both an embedding
loss function (GE2E loss) and softmax/cross-entropy loss.

3. Dataset Labeling and Noise Models
A standard approach to collecting a large and diverse dataset
(such as VoxCeleb and BookTubeSpeech) for speaker embed-
dings is to harvest audio and video files from repositories such
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as YouTube, Vimeo, etc., and to identify either manually or au-
tomatically (a) which speaker(s) appear in which files, and (b)
when each person speaks within each file. What kinds of er-
rors are likely to arise in this process? We consider four types –
Split, Merge, Permute, and Corrupt – described below.

Assumptions and definitions: Except in the Corrupt noise
model, we assume that the dataset contains no simultaneous
speech and that each utterance is short enough to contain speech
from only one speaker. We distinguish between the true labels
of the dataset that accurately identify who spoke when, and the
noisy labels that may contain some labeling errors and that are
used to train a speaker embedding model. In the context of
noisy labels, we define a group as a set of utterances that osten-
sibly belong to the same speaker (according to the noisy labels)
but that might actually come from multiple real speakers.

Label Noise Model 1 (Split): In this noise model, the ut-
terances from a randomly selected speaker are split into two
distinct groups (Fig. 1 left). This can occur if a dataset collec-
tor believes that two audio files contained two distinct speakers,
whereas in fact they both contained the same speaker.

Label Noise Model 2 (Merge): Utterances from two dis-
tinct speakers are merged into a single group (Fig. 1 center).
This could happen if a dataset collector believes that an audio
file belongs to a single speaker but in reality it belonged to two
different speakers.

Label Noise Model 3 (Permute): The speaker IDs at-
tributed to a set of utterances are randomly permuted (Fig. 1
right). This could occur (at least approximately) in a dataset
consisting of just a few but very long audio files with many
speakers where the speaker identities of many utterances were
mislabeled. Alternatively, it could occur if a dataset collector
blindly trusted a YouTube keyword search for a large set of spe-
cific people but did not check the search results for correctness.

Label Noise Model 4 (Corrupt): Finally, we consider a
noise model whereby each individual utterance may contain
speech from two speakers but is instead attributed to just a sin-
gle speaker. (This contrasts with our other noise models that
assume that each utterance contains speech from only a single
speaker.) Another way of looking at it is that, even though a
single utterance is attributed to just a single speaker, in fact it
contains speech from multiple people (and thus the utterance’s
label for the second speaker is missing). To simulate this con-
dition, for each utterance u from speaker s, we randomly select
an utterance v from a random speaker t. Then, for a randomly
selected segment within the utterance, we either (a) superpose
v onto u or (b) replace u with v during that segment. Strategy
(a) or (b) is chosen randomly with equal probability.

4. Embedding Architecture
We conducted our experiments using an embedding network
trained with the GE2E embedding loss [2]. We also tried train-
ing the embedding network as a classifier using a softmax/cross-
entropy loss and then discarding the softmax layer, similar to
x-vectors [3]. We obtained generally better results with GE2E
and thus focus on these in our paper to save space. Regarding
the impact of label noise, we observed mostly similar trends for
both training approaches; when significant differences exist, we
note them when presenting results.

Training and testing data: We used the VoxCeleb2 devel-
opment set (5,994 speakers) for training and the VoxCeleb2 test
set (118 speakers) for testing. From each audio file, we used
the librosa.effects.split function from the Librosa
library [19] to identify non-silent intervals, from which we ex-

tract the MFCCs if the segment is sufficiently long. All models
were trained for 400 epochs. Evaluation for speaker verification
was conducted in minibatches consisting of 10 different speak-
ers: For each speaker, we selected 3 random utterances for en-
rollment and 3 random utterances for verification. Based on the
similarity scores obtained from the embedding model between
pairs of utterances, we computed the Equal Error Rate (EER).
We iterate over all speakers in the test set 300x to compute EER.

Features and architectures: We used MFCC features as
inputs (window size of 0.025s, window step of 0.01s, and 40
filter-band banks), consisting of 160 frames (1.6s of audio) fed
to a 3-layer LSTM with 768 units, and then fed to a dense layer
of 256 units. This layer is either normalized to have unit L2

norm (for GE2E loss) or fed to a softmax classification layer
(for softmax/cross-entropy loss).

GE2E: We implemented the “softmax” variant of GE2E
[2]; note, however, that this loss function still operates on sets,
not individual utterances, and seeks to achieve high cosine-
similarity for embeddings from the same speaker and low simi-
larity for embeddings from different speakers. Each minibatch
consists of 5 utterances each from 4 groups (putative speakers
according to noisy labels).

Softmax/cross-entropy: The network is optimized using
cross-entropy over all speakers in the training set. Each mini-
batch consists of 64 randomly selected utterances from the en-
tire training set. (We also tried training with minibatches of 4
groups of 5 utterances each, similar as for GE2E, but found that
it worked poorly.) After training, the softmax layer is discarded,
and the penultimate layer is used as the embedding vector.

Baseline performance: Training with GE2E loss and no
label noise, we obtain an EER of 10.9% on VoxCeleb2 test and
6.66% on the VoxCeleb1 test. Though not quite state-of-the-art,
the latter result is better than the VGG-based (7.8%) embedding
model reported in the original VoxCeleb1 paper [5]. Moreover,
our approach used only 1.6s of audio for each utterance, not 3s
like in [5], which may have made the problem more difficult.

5. Experiments
Using the embedding architecture described above, we con-
ducted experiments to measure the impact of label noise on
speaker verification for each type of label noise.

5.1. Split

We initially implemented Split noise at the dataset level: We
split 180 VoxCeleb2 speakers into 10 groups each and also
added 200 more groups from real speakers; we then selected 5
utterances from each group. When we trained a speaker embed-
ding model using these noisy labels compared to the dataset’s
true labels, however, we found that the EER with noisy labels
was no worse than with true labels (for both GE2E and soft-
max). The reason is likely that, within each minibatch, the
amount of label noise is very small despite the large amount
of label noise at the dataset level. Since the performance of a
trained embedding is ultimately determined by the minibatches,
we thus implemented a more aggressive form of Split noise
directly on minibatches: With probability p, we generated a
minibatch so that k groups were split from the same speaker
(so that there were 4 − k + 1 actual unique speakers in the
minibatch); with probability 1 − p, the minibatch was uncor-
rupted. We then compared the EER of different embedding
models trained with the noisy labels (for different combinations
of p ∈ {0.25, 0.5, 0.75}, k ∈ {2, 3, 4}) and also with true la-
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Figure 1: Label noise models 1 (Split), 2 (Merge), and 3 (Permute), respectively. Best viewed in color.
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Figure 2: Split label noise: Effect on speaker verification EER, after training for 40 to 400 epochs, of splitting k out of 5 groups from
a single speaker within each minibatch with probability p.

bels. Note that these values of p and k are very high: To put
them into perspective, suppose a dataset of 6000 videos contains
only 60 unique speakers with 100 videos/speaker, but that the
noisy labels indicate that each video contains a unique speaker.
Even under this amount of mislabeling, the probability that a
minibatch contains k ≥ 3 groups all from the same speaker is
very small ( 100−1

6000
100−2
6000

= 0.0002695).
Results are shown in Fig. 2. When 25% or even 50% of all

minibatches are corrupted, then even for k = 4 (all 4 groups
split from a single speaker), the impact on EER is mild by the
end of training (just a few absolute percent difference) com-
pared to training on true labels. Only for p = 0.75 do we find a
large increase in EER (27.42% for p = 0.75, k = 4 compared
to 10.9% for true labels). (Note: We did not conduct the exper-
iment with softmax/cross-entropy since there was no obvious
analog at the minibatch level.)

Discussion: One possible reason why Split noise has only a
mild effect is that utterances belonging to the same real speak-
ers can still be well-separated, even though they are erroneously
subdivided into multiple groups due to noisy labels. For in-
stance, in Fig. 1 (left), an embedding model is trained to sepa-
rate groups 1 and 5 from each other. However, as long as the
distance between groups 1 and 5 is relatively small compared to
the distance between (for example) groups 1 and 4 or between
groups 5 and 2, then the embedding can still be effective.

Also, the EER increased substantially only when almost
all minibatches consisted of utterances from just one speaker
(p = 0.75, k = 4). In this case, the GE2E loss that tries
to separate utterances from different speakers must necessar-
ily fail because none of the utterances in a corrupted minibatch
come from different speakers. In a follow-up study with mini-
batches containing 6 groups, we found a similar trend: unless all
6 groups came from a single speaker, then the impact of Split
noise was mild. This suggests a possible mitigation strategy:
increase the minibatch size. As the minibatch size grows, the

probability that all groups come from one speaker shrinks. This
idea has also been suggested for image classification [17].

5.2. Merge

Like in Section 5.1, we varied both the probability and degree
of label noise in each minibatch, as quantified by the num-
ber of corrupted groups. If a minibatch was randomly se-
lected with probability p to be corrupted, then each of its n
groups was generated by merging m actual speakers. We varied
p ∈ {0.25, 0.5, 0.75}, n ∈ {2, 3, 4}, and m ∈ {2, 5}. To put
this into perspective, consider a hypothetical dataset in which
each video contains 8 unique speakers in equal proportion and
with no speaker appearing in two videos. If the noisy labels in-
dicated that every video contained just a single unique speaker
(i.e., 8 real speakers per group), then the probability p that a
random minibatch would contain n ≥ 3 groups each merged
from m = 5 real speakers is ( 7

8
6
8

5
8

4
8
)3 = 0.008624.

Results are in Fig. 3: The Merge label noise had a very
small impact on the speaker verification EER except when (a)
the probability of corruption within each minibatch was 0.75,
(b) at least 3 out of 4 groups in the minibatch were merged
from multiple speakers, and (c) each merged group consisted
of a large number speakers (m = 5 in our experiments). Other-
wise, the increase in EER was mild (around 1% or less). With
softmax/cross-entropy, the trend was similar.

Discussion: The mild effect when training with GE2E loss
might be due to a similar reason as for Split noise: As long
as the embedding function can preserve the distinction between
speakers within the same group while also separating (merged)
groups, then it can still be effective for speaker verification.

5.3. Permute

In contrast to Split and Merge, we implemented permutation
noise on the entire dataset, similarly to [18]. We randomly se-
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Figure 3: Merge label noise: Effect on speaker verification EER, after training for 40 to 400 epochs, of merging m different speakers
to form a single group for each of n (out of 5) different groups within each minibatch with probability p.
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Figure 4: Permute label noise: Effect on speaker verification
EER, after training for 40 to 400 epochs, of permuting (once be-
fore training) the speaker labels of random utterances selected
with probability p.

lected q percent of all utterances in the training set and permuted
their speaker IDs, for q ∈ {10, 20, 50}.

Results are in Fig. 4: Even with the speaker IDs of 10% to
20% of the training utterances permuted, the speaker verifica-
tion EER was hardly affected. We only saw a large increase in
EER when we increase the q to 50%. The baseline EER was
higher for softmax/cross-entropy, but the relative impact of per-
mutation noise was actually even smaller when q = 50%.

Discussion: Our findings contrast with those by [18], who
saw a major increase in EER for 10-20% permutation noise on
the NIST SRE dataset. Possible reasons include: (1) VoxCeleb2
might contain a greater number and diversity of recordings per
speaker compared to NIST SRE04-10, and this might provide
some robustness to noisy labels. (2) During enrollment, they
used a single utterance embedding whereas we used the mean
embedding from 3 utterances.

5.4. Corrupt

For this experiment we used only 3,000 speakers from the Vox-
Celeb2 development set for training and used the rest (2,994) for
corruption noise; hence the baseline EER with true labels was
higher. In each minibatch, all 5 utterances from all 4 groups
are corrupted. In particular, each utterance has q percent of its
raw waveform corrupted (at a randomly selected timepoint) by
either replacing or superposing the utterance from a randomly
selected speaker, for q ∈ {25, 50, 75}. This generates utter-
ances that contain speech from two people instead of one.
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Figure 5: Utterance corruption: Effect on speaker verification
EER, after training for 40 to 400 epochs, of corrupting q percent
of the speech signal of every utterance within every minibatch.

Results are in Fig. 5: For corruption of 25% and 50%
of each training utterance, the speaker verification EER suf-
fered less than 5%. Only for 75% corruption of each training
utterance do we see a strong increase in EER. Only for this
kind of label noise did we see a relatively higher impact for
softmax/cross-entropy compared to with GE2E.

Discussion: If at least half of each utterance is from the cor-
rect speaker, then the embedding model does not suffer much.
The corruption might actually help to regularize the model.

6. Conclusions
We have conducted experiments on one of the largest pub-
licly available speech datasets (VoxCeleb2) to measure the im-
pact on speaker verification Equal Error Rate (EER) of differ-
ent kinds of label noise (Split, Merge, Permute, Corrupt) on
trained speaker embeddings. Our results suggest that, contrary
to some prior results [18], highly accurate speaker labels may
not be necessary. In our experiments, even high levels of label
noise had only a slight impact on downstream speaker verifi-
cation EER, using either GE2E or softmax/cross-entropy loss
functions. This suggests that new datasets to train speaker em-
beddings might benefit most from having very large numbers
of distinct speakers and recording conditions, at the expense of
highly accurate labels.
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