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Abstract
Attention-based models with convolutional encoders en-

able faster training and inference than recurrent neural network-
based ones. However, convolutional models often require a very
large receptive field to achieve high recognition accuracy, which
not only increases the parameter size but also the computational
cost and run-time memory footprint. A convolutional encoder
with a short receptive field length can suffer from looping or
skipping problems when the input utterance contains the same
words as nearby sentences. We believe that this is due to the
insufficient receptive field length, and try to remedy this prob-
lem by adding positional information to the convolution-based
encoder. It is shown that the word error rate (WER) of a convo-
lutional encoder with a short receptive field size can be reduced
significantly by augmenting it with positional information. Vi-
sualization results are presented to demonstrate the effective-
ness of adding positional information. The proposed method
improves the accuracy of attention models with a convolutional
encoder and achieves a WER of 10.60% on TED-LIUMv2 for
an end-to-end speech recognition task.
Index Terms: speech recognition, convolutional networks, po-
sitional encoding

1. Introduction
Many automatic speech recognition (ASR) algorithms employ
recurrent neural networks (RNNs) because of their ability to
recognize sequences [1, 2, 3]. In particular, attention-based
models are prevalent for ASR [4], and they usually employ
RNNs for the encoder and decoder. However, RNN-based mod-
els are very difficult to parallelize, resulting in severe restric-
tions when implementing them on graphics processing units
(GPUs) or embedded devices for low power and high speed.
The efficiency of implementation is very low, especially when
the batch size is very small.

Recently, non-recurrent structures, such as convolution [5]
and self-attention [6], have actively been studied for application
to sequential tasks to achieve computational efficiency. Because
non-recurrent structures can process multiple input frames at
a time, the number of parameter accesses from DRAM can
be reduced significantly. In particular, for speech recognition,
convolutional neural networks (CNNs) [7, 8] and self-attention
networks [9] have been successfully applied to attention-based
models and have shown lower word error rate (WER) than
RNN-based models. We focus on convolution-based models
that require only a limited receptive field size for the input. Note
that using a limited-length input for speech recognition is very
advantageous for low-latency system design [10]. Although we
focused on attention models that are not capable of online infer-
ence, the proposed method can be extended to streaming infer-
ence when local attentions [11, 12] are applied [13].

Convolutional models for speech recognition often require
a large receptive field length to observe a long input context.
Note that the receptive field size is determined by the filter
length in each layer and the depth of the model. WER increases
drastically when the receptive field length is not sufficient. This
is mainly due to looping or skipping problems, which are fre-
quently observed when the encoder of the attention model con-
tains similar outputs at different time-steps [14]. Employing
a large filter size can help solve this problem, but it demands
a large parameter size or computational overhead. Depth-wise
convolutions can be used to reduce the parameter size overhead,
but they cannot solve the large intermediate memory require-
ment and the delay problem for the input [15, 16, 17]. We
consider that the high error rate of models with small receptive
fields is caused by the time-invariant property of convolution.
When similar pronunciation is repeated in the input speech, a
convolutional encoder also yields very close output values. This
property can be helpful in terms of generalization, but it results
in unstable attention because the model cannot distinguish sim-
ilar values at different time steps.

In this study, we analyzed the error pattern when convo-
lutional models only have small receptive field sizes. Then, it
is shown that the recognition accuracy of small receptive-field
models can be improved by adding the simplest form of posi-
tional encoding, which is used in the Transformer architecture
[18]. The encoder output is visualized to prove the effective-
ness of positional information. The proposed method improves
the accuracy of attention models with convolutional encoders,
especially when the models have small filter sizes. We achieved
10.60% WER on TED-LIUMv2 using the single end-to-end
model.

2. Related Works
The effect of positional information on CNNs for image recog-
nition was recently studied in [19]. The study has shown that
a CNN with a large receptive field size inherently learns posi-
tional information; the results of recognition rely heavily on po-
sitional information. They have shown that a sufficient recep-
tive field size and zero-padding are required for convolutional
models to learn positional information.

External positional information has been applied from the
early convolutional models for sequential tasks. Trainable po-
sitional embedding vectors were added to word embeddings for
training convolutional language models [5]. This approach is
not suitable for speech recognition, where the length of the in-
puts is longer and varies much by data. Sinusoidal positional
encoding has recently been proposed with Transformer archi-
tecture [6]. Sinusoidal positional encoding can be effective even
when the input sequence is longer than the ones in the training
data.
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Figure 1: (a) The attention-based model with 1-D depthwise
convolutions and positional information for encoder. (b) A
depthwise convolutional block and (c) a block with gating struc-
ture.

Positional information has often been considered to help
stabilize training attention weights. Attention feedback [20] and
location-based attention [18] use the past attention location his-
tory to compute current attention weights. Soft-window pre-
training uses auxiliary loss that encourages attention weights to
be aligned with the input time steps [15]. Through our experi-
mental results, we verified that applying positional encoding has
a similar effect to these methods without modifying the model
structure or training processes.

3. Model Description
The attention-based speech recognition model is based on [21],
except that 1-D depth-wise convolutional layers are used for the
encoder. Each layer is computed as follows:

x′t,k =

(T−1)/2∑
i=−(T−1)/2

Wi,k · xt+i,k

ht = f(Vx′t + b),

(1)

where f is the activation function, and W ∈ RT×D,V ∈
RD×D are the trainable variables. T and D denote the width
and output dimensions of a convolution, respectively. For the
encoder, we applied two 2-D convolutions to the input features
in the frequency- and time-axis. The 1-D depth-wise convo-
lutional layers are stacked on top of the 2-D convolutions as
shown in Figure 1. We used a residual connection for every
two convolutional layers. Layer normalization [22] was applied
after residual connections for better convergence.

In the decoder, the attention weights αi,t, the energies ei,t
for the encoder time-step t, and decoder step i are computed as:

ei,t = vTe · tanh(W[si,ht, βi,t])

αi = softmax(ei),
(2)

where v is a trainable vector, W is a trainable matrix, si is the
current decoder state, and ht is the output of the last layer of the
encoder. βi,t is the attention weight feedback which is defined
as:

βi,t = σ(vTβ ht)

i−1∑
k=1

αk,t (3)

The attention context vector is given as:

ci =
∑
t

αi,tht. (4)

The decoder is a single-layer long short-term memory [23]
(LSTM) that is computed as follows:

si = LSTM(si−1,yi−1, ci−1). (5)

Usually, the positional encoding vector in Transformer architec-
ture [6] is added to the input of the encoder. For Transformer
architecture in speech recognition, a linear transformation is of-
ten applied to the positional encoding before being added to the
input [9]. In our experiments, the best performance was ob-
tained when the positional encoding vector was concatenated to
the output of 2D convolutions. We also tried adding or concate-
nating it to the output of the convolutional encoders, but it made
training diverge in the initial stage. We used the positional en-
coding vector as proposed in [6], which is computed as follows:

pei,2k = sin(i/10000(2k)/Dmodel)

pei,2k+1 = cos(i/10000(2k+1)/Dmodel)
(6)

4. Experimental Results

Table 1: TED-LIUM release 2 results of the models with differ-
ent filter size. Pos. denotes that positional encoding is applied.

Model WER [%]

dev test

Conv. 15x2048 (T=3) 23.01 18.41
Conv. 15x2048 (T=5) 18.06 15.18
Conv. 15x2048 (T=7) 17.03 14.75
Conv. 15x2048 (T=11) 15.18 12.95
Conv. 15x2048 (T=15) 15.41 13.19

Conv. 15x2048 (T=3) + Pos. 15.75 13.37
Conv. 15x2048 (T=5) + Pos. 15.24 12.58
Conv. 15x2048 (T=7) + Pos. 15.57 13.15
Conv. 15x2048 (T=11) + Pos. 14.78 12.58
Conv. 15x2048 (T=15) + Pos. 14.87 13.14

The experiments were performed using the RETURNN
framework [24]. TED-LIUM release 2 [25] was used for train-
ing, which contains 200 hours of speech. We followed the data
preprocessing pipeline used in [26]. We used a 40-dimensional
mel-frequency cepstral coefficient for the input features, which
were extracted every 10 ms with a 25 ms window size. Byte-
pair encoding (BPE) [27] with a vocabulary size of 1K was used
for the output labels. The layer-wise pretraining was only ap-
plied to LSTM-based models because it lowers the accuracy
when used for convolutional models. The decoder was a single-
layer 1000-dimensional LSTM algorithm for all models. The
configuration files for the experiments are available online.1

1https://github.com/car3936/returnn-exp-jinh
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Transcription (WadeDavis 2003 305.16 327.12)
... depend they have a curious language and marriage rule which is called linguistic exogamy you
must marry someone who speaks a different language and this is all rooted in the mythological past
yet the curious thing is in these long houses where there are six or seven languages spoken
Without positional encoding
... depend they have a curious things and these long houses where they’re six or seven languages
spoken
With positional encoding
... depend they have a curious language and marriage rule which is called linguistic exotic me you
must marry someone who speaks a different language and this is all rooted in mythological past get
the curious things and these long houses were there six or seven languages spoken

Figure 2: The original transcript and the decoded results with and without the positional encoding.

4.1. Effect of receptive field size
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Figure 3: Test WER on TED-LIUMv2 comparing models with
different receptive field size.

The experimental results of the convolutional models on
TED-LIUMv2 are shown in Table 1. A 15x2048 model de-
notes that 15 SGCN layers with D = 2048 are stacked. We
trained the 15x2048 convolutional model while changing the fil-
ter width of depthwise convolutions. We applied max-pooling
with a size of 2 for the initial three convolutional layers. All
the models have approximately 84M parameters regardless of
the filter width because the number of parameters for depth-
wise convolution is very small. The results show that positional
encoding improved the accuracy of models consistently, espe-
cially for those with small filter sizes. Fig. 3 shows the WER of
the models with different receptive field sizes. The length of the
receptive field was calculated as (W–1) × 80ms × #layers,
where W is the filter width. The WER of the models without
positional encoding sharply increased when the receptive field
length was reduced. In comparison, when positional encoding
was employed, the WER was not significantly affected by the
length of the receptive field. This result clearly demonstrates
the effect of positional encoding on CNN-based models.

We compared the decoding results of two CNN-based mod-
els with and without positional encoding. As shown in Fig. 2,
the original transcription possesses two occurrences of ‘curious’
approximately 30 words apart. The decoding result without
positional encoding yields a shortened sentence that skips the
words between the two occurrences of ‘curious’. However, de-
coding with positional encoding faithfully shows all the words.
Such skipping occurred frequently over the entire test set. Fig.
4 shows a histogram of the number of errors according to the
lengths of the transcriptions. We plot the results of the LSTM
and the convolutional models with and without positional en-
coding. The number of errors differed significantly in longer
sequences that are more likely to contain repeated words. This
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Figure 4: The average edit distance of test set according to the
length of transcription.

(a) (b)

(c) (d)

Figure 5: The visualization of encoder output using PCA. The
first two principal components are used for visualization. The
points of 92-94th and 214-216th steps are indicated with text,
which correspond to pronunciation of the word ‘curious’. (a)
filter width = 3 (b) filter width = 3 with positional encoding. (c)
filter width = 5 (d) filter width = 5 with positional encoding.
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(a) (b)

(c) (d)

Figure 6: Attention energy ei (left) and weight αi (right) of
models (a) (b) without and (c) (d) with positional encoding are
shown. Darker pixels indicate higher values.

suggests that the convolutional model is vulnerable to skipping
problems, and applying positional encoding can alleviate this
issue.

4.2. Visualization

We used principal component analysis (PCA) [28] to analyze
the effect of positional encoding on the output of the encoder.
Fig. 5 shows a visualization of the encoder outputs of the con-
volutional models. Each point corresponds to a single time-step
output of the encoder. We focused on the results of the 92-94th
and 214-216th step outputs, which correspond to the first and
second occurrences of ‘curious’, respectively. In Fig. 5 (a) and
(c), the encoder output of the convolutional models has a similar
component when the input speech contained repeated pronun-
ciation. When positional information was applied, the encoder
outputs were located at a distance, as shown in Fig. 5 (b) and
(d). This clearly indicates that positional encoding makes the
outputs discriminative when similar words are applied.

The attention energy ei and the attention weight αi in Eq.
(3) is plotted in Fig. 6. The horizontal and vertical axes corre-
spond to the decoder and encoder time steps, respectively. The
label from transcription was given to the decoder every step for
plotting the attention energy, while the previous output was used
for the attention weight. In Fig. 6 (a), the energy has a high
value in the area indicated by the red box. This causes a mis-
alignment of attention in the inference time and results in skip-
ping, as shown in Fig. 6 (b). In Fig. 6 (c), the energy is more
concentrated around the diagonal components compared to Fig.
6 (a). This is a desired property when training the attention-
based model, since it prevents the model from diverging in the
initial stage of training [15].

Table 2: Experimental results of convolutional models with dif-
ferent sizes. LSTM and Transformer models are shown for com-
parison. Decoder is a single-layer 1000-dimensional LSTM for
all the models.

Model WER [%] Params.

dev test

Bidir. LSTM 6x1024 [26] 11.7 10.5 161M
Transformer [26] 14.7 12.5 100M

Bidir. LSTM 6x1024 12.65 10.57 161M
Bidir. LSTM 6x1024 + Pos. 17.70 12.35 161M
Unidir. LSTM 6x1536 16.78 14.42 127M

filter width = 3
Conv. 15x2048 23.01 18.41 84M
Conv. 15x2048 + Pos. 15.75 13.37 84M
Conv. 25x2048 + Pos. 14.51 11.89 127M
Gated Conv. 35x1024 + Pos. 14.94 12.73 80M
Gated Conv. 35x1536 + Pos. 13.02 11.04 229M

filter width = 5
Gated Conv. 35x2048 14.14 11.16 313M
Gated Conv. 35x2048 + Pos. 12.81 10.60 313M

4.3. Comparison with other models

Table 2 shows the results of the convolutional models with large
parameter sizes. The results of LSTM- and self-attention-based
models are also shown for comparison. The experimental re-
sults show that using positional encoding improves the accu-
racy of deeper structures. Note that bidirectional LSTM and
self-attention models consider the entire context of the input,
which is not desirable for deployment. Unidirectional LSTM
has higher WERs than convolutional models with a comparable
number of parameters.

The proposed method can be applied to other convolutional
structures. We tried gated convolution [7], which has been suc-
cessfully applied to speech recognition tasks. With gated con-
volution, we achieved a 10.60% WER on the TED-LIUM v2
test set.

5. Concluding Remarks
In this study, we demonstrated that convolutional models with
small filter sizes lack the ability to identify positional informa-
tion, which incurs looping or skipping problem in end-to-end
speech recognition. By adding explicit positional encoding,
we prevented severe performance degradation of models with
small receptive fields. The proposed method did not require any
modification to model structures or training algorithms. It also
had almost no computational overhead. Since convolutional en-
coders support fast training and inference, the proposed method
is suitable for developing an on-device low-power speech recog-
nition system.
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