
Alzheimer’s Dementia Recognition through Spontaneous Speech:
The ADReSS Challenge

Saturnino Luz1, Fasih Haider1, Sofia de la Fuente1, Davida Fromm2, Brian MacWhinney2

1Usher Institute, Edinburgh Medical School, The University of Edinburgh, UK
2Department of Psychology, Carnegie Mellon University, USA

{S.Luz, fasih.haider, sofia.delafuente}@ed.ac.uk, {fromm, macw}@andrew.cmu.edu

Abstract
The ADReSS Challenge at INTERSPEECH 2020 defines a
shared task through which different approaches to the auto-
mated recognition of Alzheimer’s dementia based on sponta-
neous speech can be compared. ADReSS provides researchers
with a benchmark speech dataset which has been acoustically
pre-processed and balanced in terms of age and gender, defin-
ing two cognitive assessment tasks, namely: the Alzheimer’s
speech classification task and the neuropsychological score re-
gression task. In the Alzheimer’s speech classification task,
ADReSS challenge participants create models for classifying
speech as dementia or healthy control speech. In the the neu-
ropsychological score regression task, participants create mod-
els to predict mini-mental state examination scores. This pa-
per describes the ADReSS Challenge in detail and presents a
baseline for both tasks, including feature extraction procedures
and results for classification and regression models. ADReSS
aims to provide the speech and language Alzheimer’s research
community with a platform for comprehensive methodological
comparisons. This will hopefully contribute to addressing the
lack of standardisation that currently affects the field and shed
light on avenues for future research and clinical applicability.

Index Terms: Cognitive Decline Detection, Affective Comput-
ing, computational paralinguistics

1. Introduction
Alzheimer’s Disease (AD) is a neurodegenerative disease that
entails a long-term and usually gradual decrease of cognitive
functioning [1]. It is also the most common underlying cause
for dementia. The main risk factor for AD is age, and there-
fore its greatest incidence is amongst the elderly. Given the
current demographics in the Western world, where the popula-
tion aged 65 years or more has been predicted to triple between
years 2000 and 2050 [2], institutions are investing considerably
on dementia prevention, early detection and disease manage-
ment. There is a need for cost-effective and scalable meth-
ods that are able to identify the most subtle forms of AD, from
the preclinical stage of Subjective Cognitive Decline (SCD), to
more severe conditions like Mild Cognitive Impairment (MCI)
and Alzheimer’s Dementia (AD) itself.

Whilst memory is often considered the main symptom of
AD, language is also deemed as a valuable source of clinical
information. Furthermore, the ubiquity of speech has led to a
number of studies investigating speech and language features
for the detection of AD, such as [3, 4, 5, 6] to cite some exam-
ples. Although these studies propose various signal processing
and machine learning methods for this task, the field still lacks
balanced and standardised datasets on which these different ap-
proaches could be systematically compared.

Consequently, the main objective of the ADReSS Chal-
lenge of INTERSPEECH 2020 is to define a shared task through
which different approaches to AD detection, based on sponta-
neous speech, could be compared. This aims to address one of
the main problems of this active research field, the lack of stan-
dardisation, which hinders its translation into clinical practice.
The ADReSS Challenge will therefore: 1) target a difficult au-
tomatic prediction problem of societal and medical relevance,
namely, the detection of cognitive impairment and Alzheimer’s
Dementia (AD); 2) to provide a forum for those different re-
search groups to test their existing methods (or develop novel
approaches) on a new shared standardized dataset; 3) mitigate
common biases often overlooked in evaluations of AD detec-
tion methods, including repeated occurrences of speech from
the same participant (common in longitudinal datasets), varia-
tions in audio quality, and imbalances of gender and age dis-
tribution; and 4) focus on AD recognition using spontaneous
speech, rather than speech samples that are collected under lab-
oratory conditions.

To the best of our knowledge, this will be the first such
shared-task focused on AD. Unlike some tests performed in
clinical settings, where short speech samples are collected un-
der controlled conditions, this task focuses on AD recogni-
tion using spontaneous speech. While a number of researchers
have proposed speech processing and natural language process-
ing approaches to AD recognition through speech, their studies
have used different, often unbalanced and acoustically varied
datasets, consequently hindering reproducibility, replicability,
and comparability of approaches. The ADReSS Challenge will
provide a forum for those different research groups to test their
existing methods (or develop novel approaches) on a shared
dataset which consists of a statistically balanced, acoustically
enhanced set of recordings of spontaneous speech sessions
along with segmentation and detailed timestamped transcrip-
tions. The use of spontaneous speech also sets the ADReSS
Challenge apart from tests performed in clinical settings where
short speech samples are collected under controlled conditions
which are arguably less suitable for the development of large-
scale monitoring technology than spontaneous speech [7].

As data scarcity and heterogeneity have hindered research
into the relationship between speech and AD, the ADReSS
Challenge provides researchers with the very first available
benchmark, acoustically pre-processed and balanced in terms
of age and gender. ADReSS defines two different prediction
tasks: (a) the AD recognition task, which requires researchers
to model participants’ speech data to perform a binary classifi-
cation of speech samples into AD and non-AD classes; and (b)
the MMSE prediction task, which requires researchers to create
regression models of the participants’ speech in order to predict
their scores in the Mini-Mental State Examination (MMSE).
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This paper presents baselines for both tasks, including fea-
ture extraction procedures and initial results for a classification
and a regression model.

2. ADReSS Challenge Dataset
A dataset has been created for this challenge which is matched
for age and gender, as shown in Table 1 and Table 2, so as to
minimise risk of bias in the prediction tasks. The data con-
sists of speech recordings and transcripts of spoken picture de-
scriptions elicited from participants through the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam [8, 9]. Tran-
scripts were annotated using the CHAT coding system [10]. The
recorded speech has been segmented for voice activity using a
simple voice activity detection algorithm based on signal energy
threshold. We set the log energy threshold parameter to 65 dB
with a maximum duration of 10 seconds per speech segment.
The segmented dataset contains 1,955 speech segments from
78 non-AD subjects and 2,122 speech segments from 78 AD
subjects. The average number of speech segments produced by
each participant was 24.86 (standard deviation sd = 12.84).
Recordings were acoustically enhanced with stationary noise
removal and audio volume normalisation was applied across all
speech segments to control for variation caused by recording
conditions such as microphone placement.

Table 1: ADReSS Training Set: Basic characteristics of the pa-
tients in each group (M=male and F=female).

AD non-AD
Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 30.0 (n/a) 1 0 29.0 (n/a)
[55, 60) 5 4 16.3 (4.9) 5 4 29.0 (1.3)
[60, 65) 3 6 18.3 (6.1) 3 6 29.3 (1.3)
[65, 70) 6 10 16.9 (5.8) 6 10 29.1 (0.9)
[70, 75) 6 8 15.8 (4.5) 6 8 29.1 (0.8)
[75, 80) 3 2 17.2 (5.4) 3 2 28.8 (0.4)
Total 24 30 17.0 (5.5) 24 30 29.1 (1.0)

Table 2: Characteristics of the ADReSS test set.

AD non-AD
Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 23.0 (n.a) 1 0 28.0 (n.a)
[55, 60) 2 2 18.7 (1.0) 2 2 28.5 (1.2)
[60, 65) 1 3 14.7 (3.7) 1 3 28.7 (0.9)
[65, 70) 3 4 23.2 (4.0) 3 4 29.4 (0.7)
[70, 75) 3 3 17.3 (6.9) 3 3 28.0 (2.4)
[75, 80) 1 1 21.5 (6.3) 1 1 30.0 (0.0)
Total 11 13 19.5 (5.3) 11 13 28.8 (1.5)

3. Acoustic and Linguistic Features
Acoustic feature extraction was performed on the speech seg-
ments using the openSMILE v2.1 toolkit which is an open-
source software suite for automatic extraction of features from
speech, widely used for emotion and affect recognition in
speech [11], and with in-house software [12]. As the purpose
of this paper is to describe the prediction tasks and set simple
baselines that can be attained without extensive optimisation,
we did not perform any feature set reduction procedures. The
following is a brief description of the acoustic feature sets used
in the experiments described in this paper:

emobase: This feature set contains the mel-frequency cep-
stral coefficients (MFCC) voice quality, fundamental frequency

(F0), F0 envelope, line spectral pairs (LSP) and intensity fea-
tures with their first and second order derivatives. Several sta-
tistical functions are applied to these features, resulting in a total
of 988 features for every speech segment [11].

ComParE: The ComParE 2013 [13] feature set includes en-
ergy, spectral, MFCC, and voicing related low-level descrip-
tors (LLDs). LLDs include logarithmic harmonic-to-noise ra-
tio, voice quality features, Viterbi smoothing for F0, spectral
harmonicity and psychoacoustic spectral sharpness. Statistical
functionals are also computed, bringing the total to 6,373 fea-
tures.

eGeMAPS: The eGeMAPS [14] feature set resulted from an
attempt to reduce the somewhat unwieldy feature sets above to
a basic set of acoustic features based on their potential to detect
physiological changes in voice production, as well as theoretical
significance and proven usefulness in previous studies [15]. It
contains the F0 semitone, loudness, spectral flux, MFCC, jitter,
shimmer, F1, F2, F3, alpha ratio, Hammarberg index and slope
V0 features, as well as their most common statistical function-
als, for a total of 88 features per speech segment.

MRCG functionals: Multi-resolution Cochleagram features
(MRCGs) were proposed by Chen et al. [16] and have since
been used in speech related applications such as voice activ-
ity detection [17], speech separation [16], and more recently
for attitude recognition [18]. MRCG features are based on
cochleagrams [19]. A cochleagram is generated by applying
the gammatone filter to the audio signal, decomposing it in the
frequency domain so as to mimic the human auditory filters.
MRCG uses the time-frequency representation to encode the
multi-resolution power distribution of the audio signal. Four
cochleagram features were generated at different levels of res-
olution. The high resolution level encodes local information
while the remaining three lower resolution levels capture spec-
trotemporal information. A total of 768 features were extracted
from each frame: 256 MRCG features (frame length of 20 ms
and frame shift of 10 ms), along with 256 ∆ MRCG and 256
∆∆ MRCG features. The statistical functionals (mean, stan-
dard deviation, minimum, maximum, range, mode, median,
skewness and kurtosis) were applied on the 768 MRCG features
for a total of 6,912 features.

Minimal: this feature set consists of basic statistics (mean,
standard deviation, median, minimum and maximum) of the du-
ration of vocalisations and pauses and speech rate, and a vocal-
isation count, similarly to [7].

In sum, we extracted 88 eGeMAPS, 988 emobase, 6,373
ComParE, 6,912 MRCG, and 13 minimal features from 4,077
speech segments. Excepting the minimal feature set, Pearson’s
correlation test was performed to remove acoustic features that
were significantly correlated with duration (when |R| > 0.2).
Hence, 72 eGeMAPS, 599 emobase, 3,056 ComParE, and 3,253
MRCG features were not correlated with the duration of the
speech chunks, and were therefore selected for the machine
learning experiments. Examples of features from the ComParE
feature set by the above described procedure include L1-norms
of segment length functionals smoothed by a moving average
filter (including their means, maxima and standard deviations),
and the relative spectral transform applied to auditory spectrum
(RASTA) functionals (including the percentage of time the sig-
nal is above 25%, 50% and 75% of range plus minimum).

In addition, we used the EVAL command in the CLAN pro-
gram [20] to compute a basic set of 34 language outcome mea-
sures (e.g., duration, total utterances, MLU, type-token ratio,
open-closed class word ratio, percentages of 9 parts of speech)
on the CHAT transcripts.
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4. AD classification task
The AD classification task consists of creating a binary classi-
fication models to distinguish between AD and non-AD patient
speech. These models may use speech data, transcribed speech,
or both. Any methodological approach may be taken, but par-
ticipants will work with the same dataset. The evaluation metric
for this task are Accuracy = TN+TP

N
, precision π = TP

TP+FP
,

recall ρ = TP
TP+FN

, and F1 = 2π×ρ
π+ρ

, where N is the number of
patients, TP, FP and FN are the number of true positives, false
positives and false negatives, respectively.

4.1. Baseline classification

We performed our baseline classification experiments using five
different methods, namely linear discriminant analysis (LDA),
decision trees (DT, with leaf size of 20 and the CART algo-
rithm), nearest neighbour (1NN, for KNN with K=1), random
forests (RF, with 50 trees and a leaf size of 20) and support vec-
tor machines (SVM, with a linear kernel with box constraint of
0.1, and sequential minimal optimisation solver). The classifi-
cation methods were implemented in MATLAB [21] using the
statistics and machine learning toolbox. A leave-one-subject-
out (LOSO) cross-validation setting was adopted, where the
training data do not contain any information from validation
subjects.

Two-step classification experiments were conducted to de-
tect cognitive impairment due to AD (as shown in Figure 1).
This consisted of segment-level (SL) classification, where clas-
sifiers were trained and tested to predict whether a speech seg-
ment was uttered by a non-AD or AD patient, and majority vote
(MV) classification, which assigned each subject a class label
based on the majority labels of SL classification.

4.2. Results

The classification accuracy is shown in Tables 3 and 4 for LOSO
and test settings respectively. These results show that the 1NN
(0.574) provides the best accuracy for acoustic features using
ComParE set for AD detection, with accuracy above the chance
level of 0.50. From the results shown in Table 3, we note that
even though 1NN provides the best result (0.574), DT and LDA
also exhibit promising performance, being in fact more stable
across all feature sets than the other classifiers (the best average
accuracy of 0.559 for LDA and 0.570 for DT). We also note that
Minimal, ComParE and linguistic also exhibit promising perfor-
mance, being in fact more stable across all classifiers than the
other features (the best average accuracy of 0.552 for Minimal,
0.541 for Compare and 0.713 for linguistic). Based on these
findings we have selected the LDA model trained using Com-
ParE as our baseline model for acoustic features.

Table 4 shows that 1NN provides less accurate results on
the test set than in LOSO cross validation. However, the results
of LDA (0.625) and DT (0.625) improve on the test data for
acoustic features. The linguistic features provide an accuracy
of 0.75, which is better than automatically extracted acoustic
features though it relies on manual transcription. The challenge
baseline accuracy for the classification task are therefore 0.625
for acoustic features and 0.75 for linguistic features. The preci-
sion, recall and F1 Score are reported in Table 5.

5. MMSE prediction task
The MMSE prediction task consists of generating a regression
model for prediction of MMSE scores of individual partici-

Table 3: AD classification accuracy on LOSO cross validation.

Features LDA DT 1NN SVM RF mean
emobase 0.500 0.519 0.398 0.491 0.472 0.476
ComParE 0.565 0.528 0.574 0.528 0.509 0.541
eGeMAPS 0.482 0.500 0.380 0.333 0.482 0.435
MRCG 0.519 0.500 0.482 0.528 0.509 0.507
Minimal 0.519 0.667 0.426 0.565 0.583 0.552
linguistic 0.768 0.704 0.740 0.602 0.750 0.713
mean 0.559 0.570 0.500 0.508 0.551 –

Table 4: AD classification accuracy on test set.

Features LDA DT 1NN SVM RF mean
emobase 0.542 0.688 0.604 0.500 0.729 0.613
ComParE 0.625 0.625 0.458 0.500 0.542 0.550
eGeMAPS 0.583 0.542 0.688 0.563 0.604 0.596
MRCG 0.542 0.563 0.417 0.521 0.542 0.517
Minimal 0.604 0.562 0.604 0.667 0.583 0.604
linguistic 0.750 0.625 0.667 0.792 0.750 0.717
mean 0.608 0.601 0.573 0.590 0.625 –

Table 5: Baseline results of AD classification task using the LDA
classifier with acoustic and linguistic features.

class Precision Recall F1 Score Accuracy

LOSOAcous
non-AD 0.56 0.61 0.58 0.56AD 0.57 0.52 0.54

TESTAcous
non-AD 0.67 0.50 0.57 0.62AD 0.60 0.75 0.67

LOSOling
non-AD 0.76 0.78 0.77 0.77AD 0.77 0.76 0.77

TESTling
non-AD 0.70 0.87 0.78 0.75AD 0.83 0.62 0.71

pants from the AD and non-AD groups. Unlike classification,
MMSE prediction is relatively uncommon in the literature, de-
spite MMSE scores often being available. While models may
use speech (acoustic) or linguistic data individually or in com-
bination, the baseline described here report results of acoustic
and linguistic models built separately.

5.1. Baseline regression

We performed our baseline regression experiments using five
different methods, namely decision trees (DT, with leaf size of
20 and CART algorithm), linear regression (LR), gaussian pro-
cess regression (GPR, with a squared exponential kernel), least-
squares boosting (LSBoost, which contains the results of boost-
ing 100 regression trees) and support vector machines (SVM,
with a radial basis function kernel with box constraint of 0.1,
and sequential minimal optimisation solver). The regression
methods are implemented in MATLAB [21] using the statistics
and machine learning toolbox. As with classification, the re-
gression experiments were conducted in two steps for acoustic
features (Figure 1), with SL regression followed by averaging
of predicted MMSE values.

5.2. Results

The regression results are reported as root mean squared error
(RMSE) scores in Tables 6 and 7 for LOSOCV and test data.
These results show that DT (7.28) provides the best RMSE us-
ing MRCG features for MMSE prediction with r = −0.759,
being more stable across all acoustic feature sets than the other
classifiers (the best average RMSE of 6.86 for DT). We also
note that Minimal and eGeMaPs also exhibit promising perfor-
mance, with RMSE of 7.46 and 8.02 respectively across models.
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Figure 1: System Architecture: A(i), the recording of is segmented using voice activity detection (VAD) into n segments x(i, n).
Acoustic feature extraction (FE) is performed at segment level. The output of classification or regression for the nth segment of the ith

recording is denoted y(i, n). MV outputs the majority voting for classification, and Average the mean regression score.

Based on this, the DT model trained using the MRCG feature
was chosen as the baseline model for the regression task for
acoustic features. For linguistic features, we selected the DT
model as baseline with RMSE of 4.38 (r = 0.792).

Table 7 shows the results of regression methods on test
data. The baseline model (DT with MRCG features) provides
an RMSE of 6.14 (r = 0.22) in the test setting. Hence the
challenge baseline accuracy for this task is 6.14 for acoustic
features. The linguistic feature model provides an RMSE of
5.20 (r = 0.57), which therefore corresponds to the ADReSS
challenge baseline accuracy for linguistic features in this task.

Table 6: MMSE prediction LOSO cross Validation results. the
chance level is RMSE of 7.18

Features Linear DT GP SVM LSBoost mean
emobase 7.44 7.29 7.71 7.71 8.33 7.70
ComParE 15.69 7.29 7.67 7.63 7.84 9.22
eGeMAPS 8.08 7.31 7.72 8.55 8.68 8.07
MRCG 13.46 7.28, r = −0.76 7.65 7.50 8.02 8.78
Minimal 7.39 7.60 7.18 8.01 7.14 7.46
Linguistic 6.15 4.38, r = 0.79 7.92 6.34 7.44 6.45
mean 9.70 6.86 7.64 7.62 7.91 –

Table 7: MMSE prediction test results.

Features Linear DT GP SVM LSBoost mean
emobase 6.80 6.78 6.36 6.18 6.73 6.57
ComParE 6.47 6.52 6.33 6.19 6.72 6.45
eGeMAPS 6.90 5.99 6.28 6.12 6.41 6.34
MRCG 6.70 6.14, r = 0.22 6.33 6.20 6.31 6.33
Minimal 6.29 6.84 6.58 6.19 7.71 6.72
Linguistic 4.78 5.20, r = 0.57 5.54 6.24 6.62 5.68
mean 6.32 6.25 6.24 6.19 6.75 –

6. Discussion
These results of the classification baseline are comparable to
those attained by models based on speech recordings available
from spontaneous speech samples in DementiaBank’s Pitt cor-
pus [8], which is widely used. Accuracy scores of 81.92%,
80% and 79% and 64% have been reported in the literature
[3, 22, 23, 7]. Although these studies report higher accuracy
than the baselines presented here, all of those studies (except
[7]) combined information from the manual transcripts with
acoustic data, and were conducted on an unbalanced dataset (in
terms of age, gender and number of subjects in the AD and non-
AD classes). It is also worth noting that accuracy for the best
performing of these models drops to 58.5% when feature se-
lection is not performed on their original set of 370 linguistic
and acoustic features [3]. Models that relied only on acoustic
features were reported in [7] (64% accuracy) and [23] (62% ac-
curacy, using an SVM model). It is also noted that previous
studies do not evaluate their methods in a complete subject-
independent setting (i.e. they consider multiple sessions for a
subject and classify a session instead of a subject). This could

lead to overfitting, as the model might learn speaker dependent
features from a session and then, based on those features, clas-
sify the next session of the same speaker.

One strength of our method is its speaker independent na-
ture. Ambrosini et al. reported an accuracy of 80% while us-
ing acoustic (pitch, unvoiced duration, shimmer, pause duration,
speech rate), age and educational level features for cognitive
decline detection using an Italian dataset of an episodic story
telling setting [24]. However, this dataset is less easily com-
parable to ours, as it is elicited differently, and is not age and
gender balanced.

Yancheva and colleagues [25] predicted MMSE scores
with speech-related features using the full DementiaBank Pitt
dataset, which is not balanced and includes longitudinal obser-
vations. Their model yielded a mean absolute error (MAE) of
3.83 in predicting MMSE. However, they employed lexicosyn-
tactic and semantic features derived from manual transcription,
rather than automatically extracted acoustic features as we used
in our analysis. In [25], those linguistic features were the main
features selected from a group of 477, with acoustic features
typically not being among the most relevant. Therefore no
quantitative results were reported for acoustic features.

7. Conclusions
This paper described the ADReSS challenge, and set simple
baselines for its tasks, demonstrating the relevance of acoustic
and linguistic features of spontaneous speech for cognitive im-
pairment detection in the context of Alzheimer’s Disease diag-
nosis and MMSE prediction. Machine learning methods operat-
ing on automatically extracted voice features provide a baseline
accuracy of up to 62.5% on the AD classification task, while lin-
guistic features extracted from manually produced transcripts
yielded 76.85% accuracy on the same task. These results are
well above the chance level of 50%. A baseline RMSE of 6.14
and 5.21 for acoustic and linguistic features respectively on test
has been established for the MMSE regression task. It is reason-
able to expect that the ADReSS Challenge’s participants will at-
tain better accuracy scores by employing further pre-processing,
feature set reduction, and more complex models than the ones
employed in this paper. By bringing the research community
together in order to work on a shared task on the same dataset,
ADReSS intends to make comprehensive methodological com-
parisons. This will hopefully highlight research caveats and
shed light on avenues for clinical applicability and future re-
search directions.
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