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Abstract 
In a variety of conversation contexts, accurately predicting the 
time point at which a conversational participant is about to 
speak can help improve computer-mediated human-human 
communications. Although it is not difficult for a human to 
perceive turn-taking intent in conversations, it has been a 
challenging task for computers to date. In this study, we 
employed eye activity acquired from low-cost wearable 
hardware during natural conversation and studied how pupil 
diameter, blink and gaze direction could assist speech in voice 
activity and turn-taking prediction. Experiments on a new 2-
hour corpus of natural conversational speech between six pairs 
of speakers wearing near-field eye video glasses revealed that 
the F1 score for predicting the voicing activity up to 1s ahead 
of the current instant can be above 80%, for speech and non-
speech detection with fused eye and speech features. Further, 
extracting features synchronously from both interlocutors 
provides a relative reduction in error rate of 8.5% compared 
with a system based on just a single speaker. The performance 
of four turn-taking states based on the predicted voice activity 
also achieved F1 scores significantly higher than chance level. 
These findings suggest that wearable eye activity can play a 
role in future speech communication systems. 

Index Terms: voice activity prediction, turn-taking 
prediction, multi-modal, conversation, eye activity 

1. Introduction 
Conversation plays an important role in our daily life, where 
our feelings and ideas are expressed and exchanged, as well as 
other important information. Developments in human-like 
robotics and computer-aided mediations in human-human 
conversation (for example during COVID-19) create an 
imperative demand on the understanding of conversations 
automatically. This results in an increasing number of studies 
[1]–[6] focusing on building a human-like dialogue system 
that responds and engages correctly. To smooth conversation 
engagement, one of the aims is to predict conversation turn-
taking automatically [1], [7], [8], i.e. identify the time point 
where people wish to speak or to end speech ahead of time. 

Recently, many dialogue systems (e.g. [9], [10]) have 
provided rigid turn-taking estimation by detecting the end of 
the utterance, which relies on a duration threshold of the non-
speech part to predict the next turn. Apart from speech, 
different modalities, e.g. behavioral signals [11], [12], 
physiological signals [3], [13], and multimodal signals [1], 
[14], have also been investigated. Compared with speech 
signals, information captured in eye contact, head movement 
or respiration provides different informative clues. An 

advantage of these non-speech signals is that they contain 
useful cues of not only the speaker but also the listener. In eye 
activity, gaze has been widely accepted as an important clue to 
predict the turns during a conversation. However, other eye-
related information, like blink and pupillary response, have 
not been fully researched to aid turn-taking prediction. The 
reason for selecting eye activity apart from speech is that it is 
‘always-on’, can be acquired from mobile and wearable 
devices, and can be analyzed continuously even when speech 
is inactive, making it attractive to investigate herein. Also, 
when backgrounds are crowded and noisy, speech may not be 
reliably available for analysis.  

2. Related Work 
Speech processing and nonverbal behavioral signals have 
previously been researched for turn-taking detection. In 
speech processing, most studies (e.g. [2], [7], [15]) focused on 
detecting the end of a turn using prosodic, acoustic and 
syntactic features extracted from the participant’s speech. For 
example, in [2], conversations were segmented into inter-
pausal units (IPU) and turn-yielding cues were extracted from 
acoustic, prosodic, syntactic sources. Their results showed that 
a linear-kernel SVM classifier achieved the highest accuracy. 
Considering the influence of previous speaking activity on the 
turn-taking prediction, Skantze [16] applied Recurrent Neural 
Networks with Long Short-Term Memory (LSTM) as a 
general continuous model of turn-taking. There is no denying 
the importance of the speaker’s speech on turn-taking 
prediction, but the state of his/her partner (i.e. the listener) 
may also be valuable to explore. To our knowledge, how 
listener’s state contributes to their decision to end their turn 
has not been investigated.  

Among nonverbal behaviors, eye gaze, head movement 
and other physical motion have been evaluated during turn-
taking. Many studies have suggested that eye gaze is an 
effective nonverbal behavioral feature [17] for turn-taking 
prediction. It can be more useful when combined with 
prosodic features [4]. As eye gaze is under voluntary control, 
its patterns can be easily influenced by individual preferences 
and conversational contexts, such as remote communication 
via teleconference or teleconsultation. In [18], the pattern of 
eye gaze together with head movement and perceived emotion 
were explored in multi-party conversation conditions, showing 
that turn-taking detection performances with and without gaze 
features were not significantly different. This indicates that 
eye gaze may not be a consistently effective feature for turn-
taking detection due to its task-specific nature.  

Unlike gaze, pupillary response and blink are two kinds of 
eye activity which are involuntary and less task-specific, but 
have seldom been investigated in turn-taking study although 
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they have been often employed in mental workload estimation 
[19]–[24]. Different studies [19]–[21] have suggested that 
pupil diameter represents a good index of mental activity since 
the pupil dilates while we are performing more difficult 
cognitive tasks. Palinko et al. found that the pupil dilates more 
significantly during speaking than during listening [25]. Blink 
has also been researched and is believed to be a good 
communication index in dyadic conversation [26], and a kind 
of ‘punctuation mark’ of mental activity changes [22]. With 
recent advances in eye computing hardware and algorithms 
[27], eye activity can be easily recorded and acquired. A 
recent study [28] explored pupillary response and blink in low 
and high communication loads, showing that pupil size 
changes differently in listening and speaking segments during 
low communication load.  

In controlled laboratory experiments, the conducted 
conversations are often not as natural as real conversations in 
our daily life [29], however herein we set few restrictions on 
physical movements and investigate eye activity change 
during dyadic conversations. Since eye activity can be 
obtained continuously from two interlocutors, it is of interest 
to explore whether information from two conversation sides 
could infer their future intention to speak, and to predict turn- 
taking. To our acknowledge, no paper has previously 
investigated the performance of pupillary response and blink 
on turn-taking detection, especially from the perspective of 
exploring the state of the current listener.  

3. Proposed Prediction System 
Since this paper aims to investigate whether including both 
interlocutors’ states can indicate speech activity and turn-
taking state, we proposed a system to predict speech and non-
speech state of a future period of time by extracting their 
continuous audio-visual information and then deciding the 
turn-taking status based on associated rules. Figure 1 shows a 
block diagram of the proposed system which fuses 
information from two speakers. 

 
Figure 1: Block diagram of the proposed system. Two speakers’ 

speech and eye activity information comprise the input 
modalities. Based on the prediction of voice activity, four 

types of turn-taking status are then detected. 
The feature set of two speakers (Si where i = 1,2) during a 

dyadic conversation are organized as  at 20 
fps which is shown in Figure 2, where  represents the 
features from the ith speaker. In this study, three main types of 
eye activity are extracted from wearable eye videos: pupil size, 
blink status and gaze direction. Considering the important role 
of speech in turn-taking, we also include current voice activity 
(speech (1)/no speech (0)) and prosodic features of two 
speakers in this system. Overlapped speech, which is 
inevitable in natural conversation, has often been ignored in 
speech processing system, however since both interlocutors’ 
information is included in this system, there is no need to treat 
overlapped speech differently.  

An intermediate output of the system is the prediction of 
voice activity (0 and 1) in the following period T, as seen in 
Figure 2. Based on the predictions  and the current 
voice activity , the future turn-taking onset is inferred. If 

 is non-speech and  is speech state, this predicts 
that turn-taking will occur in the ensuing period of time T. If 

 and  are both non-speech states, a no-turn status 
(i.e. listening) will continue. If  is speech and  is 
non-speech, then turn-giving will occur next. If  and 

  are both speech states, the turn will be held by the 
speaker.  

 
Figure 2: Illustration of feature extraction from 2 speakers 

, a feature window of duration W and the 
turn-taking prediction based on voice activity prediction. Red 
rectangle: extracted frame, green rectangle: a feature window 

W, blue rectangle: prediction for the future period T, black 
rectangle: turn-taking prediction based on the two states of 

voice activity.   
Different classification algorithms have been researched in 

this field, including logistic regression, support vector 
machine (SVM), but also recurrent neural networks. LSTMs 
also previously achieved excellent performance of turn taking 
using speakers’ speech features only [16]. Herein, we employ 
SVM to predict the following speech state and also explore the 
performance using LSTM. 

4. Experiment Setting 

4.1. Data Collection 
To investigate eye activity during natural conversation, we 
designed a conversational task and collected eye and speech 
recordings from 12 volunteers (9 females, 3 males, average 
age: 25.6). The task was a role play survival task, in which the 
participants’ ship has been forced to land at a remote location 
200 miles away from their destination. They were given 15 
items from which they needed to select 10 items to take and 
needed to rank them in an order of importance. 12 Participants 
were randomly divided into 2-person groups. Each participant 
had 5 minutes to solve the survival task individually, and then 
they had a maximum of 10 minutes to discuss with their 
partner and reach a consensus about the selected items and 
ranking. For the purposes of this research, only the 
conversations were analyzed in this study. 

Throughout the experiment, each participant was required 
to wear a close-talk headset and a glasses-like hardware (Pupil 
Labs [30]) with two small infrared webcams pointing towards 
the two eyes. A scene camera recorded the experiment and 
two laptops displayed the survival task prompts and recorded 
individual videos. The experiment was conducted in a quiet 
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laboratory with ripple-free lighting. Figure 3(a) shows the 
equipment used, and Figure 3(b) shows a scene view of the 
data collection from one group. Differently from other eye 
activity datasets in previous studies, eye videos of both 
participants in the conversation were recorded in this dataset. 

  
(a) (b) 

Figure 3: Illustration of the data collection. (a) The equipment 
in this data collection: two headsets, two Pupil Labs hardware 

and one Go-Pro. (b) Two participants completed the 
conversational task face-to-face. 

4.2. Data Pre-processing and Feature Extraction 
Two video files were recorded from each participant. One was 
the eye video captured by a Pupil Labs eye tracker at 30fps, 
and the other one was the personal view captured by the 
laptop. To easily synchronise near-field eye videos and audios, 
we asked each participant to close their eyes and clap their 
hands three times at the start of the experiment. Based on the 
logged files provided by Pupil Labs software, the pupil sizes 
of the both eyes were extracted. To obtain accurate blink 
status and gaze direction, we annotated these videos using 
Anvil [31]. A binary feature was used to represent blink status 
(eye close/eye open). Three types of gaze direction (GD) were 
involved: looking at computer (1), partner (2) and other (3), 
which was manually annotated. Three raw features, i.e. pupil 
size, blink and gaze, were down sampled to 20fps for analysis. 
Besides the near-field eye features, prosodic features were also 
extracted from speech recordings as paper [2]: intensity, pitch, 
jitter, shimmer and noise-to-harmonics ratio (NHR) were 
extracted using openSMILE [32]. Voice activity was extracted 
from the defined Inter-Pausal Units (IPU) using SPPAS [33].  

In this study, a total of 117 minutes of data were collected 
from 12 participants (6 pairs of conversations). Due to 
individual pupil size differences, the percent change in pupil 
size (PC) relative to a pupil size baseline was adopted, like 
prior studies [34]. Pcurrent and Pbaseline represent the current and 
baseline pupil size respectively, where Pbaseline is the average 
pupil size over the 10s before the start of the conversation.  

  (1) 
To extract more information from the pupillary response, a 

feature window (see in Figure 2) was used to extract average 
percent change in pupil size (MeanPC), range of percent 
change in pupil size (RP), standard deviation of percent 
change in pupil size (STD), maximum percent change in pupil 
size (MaxPC), minimum percent change in pupil size (MinPC) 
from the raw pupil size data. For gaze, since each frame was 
annotated to three types of direction, a 3-dimensional one-hot 
feature was used. In each window, blink information (BI), GD, 
and speech features were averaged across all frames. 
Considering the average value of voice activity was used in 
feature window, , which we considered for two states in 
Section 3 (i.e. 0 or 1), had  another state which between 0 and 
1. Therefore, we added two rules: if  is between 0 and 1 

and  is 0, then we predicted turn-giving will occur in 
the following T. Otherwise, turn-taking will occur. For the 
voice activity of target label, a value of 1 was adopted if at 
least one frame during the prediction window T was speech.   

In total, two main groups of features were extracted (see in 
Table 1) from the source of eye activity and speech. 36 
features were extracted from two speakers’ near-field eye 
videos and from the speech recordings during a conversation. 
As two speakers’ data were all captured during a conversation, 
12 participants’ data were from 6 pairs of conversations. We 
employed 5-fold leave-two-pairs-out cross validation 
experiment, meaning that each pair of participants were 
included only in the training set or the test set.  

Table 1: Two groups of feature set from one speaker 

Eye Activity (12) Speech (6) 

Pupil Response 
(from two eyes, 8) 

Blink 
(1) Gaze (3)  

MeanPC 
RP 
MaxPC 
MinPC 

BI 
 

GD 
 

Voice activity 
Intensity 
Pitch 
Jitter 
Shimmer 
NHR 

5. Results and Discussion 

5.1. Prediction of Voice Activity based on SVM  

5.1.1. Feature Window Duration and Prediction Length 

Two parameters exist in the proposed system: feature window 
duration W and prediction length T, and 4 values (i.e. 0.25s, 
0.5s, 1, 2s) were chosen for both. Smaller values were not 
considered, for example, if W is smaller than 0.25s then the 
signal extracted from each window will be less than 4 frames, 
during which eye-related activity does not change much. F-
scores of predictions for varying W and T are shown in Figure 
4. Figure 4(a) shows that the accuracy drops with a larger W. 
All four prediction lengths have the highest accuracy when W 
is 0.25s. The highest accuracy achieved is 90.9% when W is 
0.25s and T is 0.25s. Figure 4(b) shows a decreasing trend 
when predicting a further into the future (larger T). As 
discussed before, we found that when W is 2s, the accuracy is 
the lowest in Figure 4(b) and it may or may not reliably 
predict short times into the future. 

 
   (a) Feature window duration W (b) Prediction length T 

Figure 4: F-scores for (a) varying W in different T settings and 
(b) varying T in different W settings to explore the effect of 

two parameters in voice activity prediction 
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5.1.2. One-side vs. Two-side  

It is of interest to compare performance between using only 
one speaker’s features and using both. We denote the feature 
window duration and prediction length setting as (W, T). Two 
settings are shown, based on favorable parameter choices from 
Figure 4. Voice activity prediction results are shown in Table 
2, which demonstrate that using two-side features provides a 
relative reduction in error rate of 8.5% compared with using 
speech one-side features. It makes sense that the accuracy 
improves with more information obtained from both 
interlocutors.  

Table 2: Summary of accuracy comparisons for one-side 
feature set and two-side feature set in (0.25s, 1s) and (1s, 1s). 

 (0.25s, 1s) (1s, 1s) 
 One-side Two-side One-side Two-side 

Precision 95.1% 95.8% 87.1% 88.5% 
Recall 75.0% 76.9% 75.4% 76.9% 

F-score 83.8% 85.3% 80.8% 82.3% 

5.1.3. Eye Features vs. Speech Features 

Comparing the use of eye activity only with speech only from 
two sides (Tables 3 and 4), speech features outperform eye-
related features in voice activity prediction in general. With 
prediction length fixed at 1s, it seems that eye activity 
performs better for larger feature window durations (Table 3), 
but the speech shows the opposite trend (Table 4). It makes 
sense that better eye information can be extracted when the 
window is longer since pupil changes need time [35]. 
However, for speech, long feature windows may include too 
much variability. 

Table 3:  Summary of accuracy comparisons for eye activity 
 (0.25s, 1s) (0.5s, 1s) (1s, 1s) (2s, 1s) 

Precision 66.9% 60.7% 57.3% 58.0% 

Recall 42.0% 46.9% 59.2% 72.3% 

F-score 51.6% 52.8% 57.7% 63.7% 

Table 4: Summary of accuracy comparisons for speech 
 (0.25, 1s) (0.5s, 1s) (1s, 1s) (2s, 1s) 
Precision 95.3% 92.3% 87.5% 81.0% 
Recall 74.1% 74.6% 76.2% 77.3% 

F-score 83.4% 82.5% 81.4% 79.1% 

5.2. Prediction of Next Turn Onset based on Voice 
Activity Prediction 

Based on the predicted voice activity, combined with current 
voice activity state, the turn-taking state can be inferred 
(Figure 2). According to the above investigation of the 
proposed system, we chose (1s, 1s) which had a high accuracy 
in voice activity prediction, but also good performance 
achieved by using both eye activity and speech features. For 
(1s, 1s), there are 174 turn-taking instances, 199 turn-giving 
instances, 978 no-turn instances and 745 turn-hold instances. 
Based on the rules, the prediction accuracies of the four types 
of states during a conversation are shown in Table 5. Hold and 
no-turn are easily predicted, while turn-taking and turn-giving 
are more difficult, although much higher than chance level. 
The accuracy is low because we checked the turn shifts on the 

exact time window which means we did not include the 
instances which may also detected the shifts but in advance.  
Table 5: Summary of accuracies of four types of decisions in 

turn-taking (1s, 1s) 
 Take Give No turn Hold 
Instances 174 199 978 745 
Chance level 8.3% 9.5% 46.7% 35.5% 
SVM 
(F-score) 36.8% 31.5% 98.4% 82.8% 

LSTM 
(F-score) 42.4% 59.8% 94.3% 79.3% 

5.3. LSTM Method 
Regarding the high accuracy of LSTM method achieved in 
turn-taking prediction [16], we replaced SVM with LSTM as 
the backend to predict the voice activity and then used rules 
for the turn-taking decision. Similarly with [16], one LSTM 
layer and one dense layer were used. 40 hidden units were 
used in the LSTM layer. The tanh function was used in the 
LSTM layer and the sigmoid function was used in dense layer. 
The learning rate was set to 0.001 and the L2 regularization 
was set 0.001. Although the feature sets and data are not 
identical, the results for different T are consistent with results 
in [16]. The shorter the prediction length, the higher the 
accuracy that can be achieved; however, we used eye activity 
and speech features from two speakers. Turn-taking decisions 
were also checked by using the LSTM outputs. The results are 
shown in Table 5. Compared with voice activity using SVM, 
LSTM method can achieve a higher accuracy in turn-taking. 

6. Conclusion 
In this paper, we proposed a system to predict turn-taking 
states during dyadic conversation using low-cost wearable 
hardware. Voice activity, as an intermediate output of the 
proposed system, was predicted by extracting near-field eye 
activity and speech. To our knowledge, this is the first work to 
use pupil size and blink in voice activity and turn-taking 
prediction. Through experiments on a natural conversation 
dataset, we found that combining eye activity and speech is 
useful, improving voice activity prediction by a relative 
reduction in error rate of 5%-12.9% compared with speech 
features alone and 8.5% compared with one person’s features. 
In voice activity prediction, we found that a shorter feature 
window and a shorter prediction can increase the accuracy 
when fusing eye activity and speech. For eye activity, a larger 
feature window duration provides more information while the 
speech features show an opposite trend. Based on the 
predicted voice activity and turn-taking rules, we can achieve 
turn-taking prediction accuracy that is much higher than the 
chance-level. This work shows the potential for using eye 
information to augment the performance in turn taking. One 
limitation of our work is that pupil size is sensitive to light and 
may be influenced by the gaze direction change between 
computer and partner, which might explain a lower 
performance than using speech features.   
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