ISCA Archive Interspeech 2020
ISCA Archive Interspeech 2020

Transformer with Bidirectional Decoder for Speech Recognition

Xi Chen, Songyang Zhang, Dandan Song, Peng Ouyang, Shouyi Yin

Attention-based models have made tremendous progress on end-to-end automatic speech recognition (ASR) recently. However, the conventional transformer-based approaches usually generate the sequence results token by token from left to right, leaving the right-to-left contexts unexploited. In this work, we introduce a bidirectional speech transformer to utilize the different directional contexts simultaneously. Specifically, the outputs of our proposed transformer include a left-to-right target, and a right-to-left target. In inference stage, we use the introduced bidirectional beam search method, which can not only generate left-to-right candidates but also generate right-to-left candidates, and determine the best hypothesis by the score.

To demonstrate our proposed speech transformer with a bidirectional decoder (STBD), we conduct extensive experiments on the AISHELL-1 dataset. The results of experiments show that STBD achieves a 3.6% relative CER reduction (CERR) over the unidirectional speech transformer baseline. Besides, the strongest model in this paper called STBD-Big can achieve 6.64% CER on the test set, without language model rescoring and any extra data augmentation strategies.1