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Abstract
In this study, we propose a speaker-dependent WaveNet

vocoder, a method of synthesizing speech waveforms with
WaveNet, by utilizing acoustic features from existing vocoder
as auxiliary features of WaveNet. It is expected that WaveNet
can learn a sample-by-sample correspondence between speech
waveform and acoustic features. The advantage of the pro-
posed method is that it does not require (1) explicit modeling
of excitation signals and (2) various assumptions, which are
based on prior knowledge specific to speech. We conducted
both subjective and objective evaluation experiments on CMU-
ARCTIC database. From the results of the objective evaluation,
it was demonstrated that the proposed method could generate
high-quality speech with phase information recovered, which
was lost by a mel-cepstrum vocoder. From the results of the
subjective evaluation, it was demonstrated that the sound qual-
ity of the proposed method was significantly improved from
mel-cepstrum vocoder, and the proposed method could capture
source excitation information more accurately.
Index Terms: WaveNet, convolutional neural network,
vocoder, deep neural network

1. Introduction
In recent years, the demand for speech waveform synthesis
technique by computer is increasing. Speech waveform syn-
thesis is an indispensable basic technique for applications with
speech interface such as smartphone, car navigation system,
speech translation and screen readers, etc. Various demands are
also occurring, such as stable and easy to hear, not mechanical
but highly naturally sounded human speech, control of speech
speed and voice characteristics, multiple speakers, multiple lan-
guages, emotional speech, etc. Expectations for high-quality
and diverse speech waveform synthesis technique will be in-
creasing more and more in future.

Various speech waveform synthesis techniques have been
proposed so far. One of the representative techniques is con-
catenative synthesis [1, 2]. In this method, many speech wave-
forms are divided into fine fragments such as phoneme and syl-
lable units and then stored in a database beforehand. At syn-
thesis phase, an optimum segment sequence to given text is
extracted and combined. Since speech units are directly con-
nected, it is advantageous that high-quality speech with high
clarity can be obtained. However, it is often difficult to generate
various speech with voice characteristics changed flexibly. An-
other technique is parametric waveform synthesis, focusing on
speech generation process. The speech waveform can be syn-
thesized from acoustic features; they represents sound source
and vocal tract characteristics. The system which implements
this process as a digital filter is often called as vocoder [3]. Var-
ious vocoders have been proposed so far [4–11], and they are
imposed on many assumptions based on prior knowledge spe-

cific to speech [12]; e.g., fixed length of analysis window, time-
invariant linear filter, stationary Gaussian process, etc. More-
over, since vocoders are accompanied by modeling source ex-
citation signals and detailed temporal, phase information of the
original speech will be lost. While the introduction of these as-
sumptions simplifies mathematical formulation and has an ad-
vantage of implementation, the sound quality of the synthesized
speech will be more or less deteriorated.

Following these studies, a neural network called
WaveNet, which directly generates speech waveforms
without vocoder [13], has been proposed. The WaveNet will
be briefly reviewed in Section 2. One of its features is that
it does not depend on the characteristics of the data to be
applied, and can build a generative model in a data-driven
manner. In the case of speech, various assumptions based on
the prior knowledge specific to speech can be avoided. In
the original literature [13], it was applied to text-to-speech
(TTS), and the quality of synthesized speech exceeded that of
state-of-the-art approaches [14, 15]. The input to the WaveNet
was the linguistic feature, the fundamental frequency (fo), and
the phoneme duration, except for the waveform samples that it
generated in the past. However, it was not specifically clarified
what kind of features works effectively other than those.

Our aim is realization of a new vocoder which resolves var-
ious constraints imposed on existing vocoders and synthesizes
high quality speech simultaneously. In this study, we propose
a method that uses the acoustic features of existing vocoders
as auxiliary features of WaveNet, which will be described in
Section 3. Figure 1 shows the difference in speech waveform
generation in conventional vocoder and proposed method. The
proposed method does not require various assumptions imposed
on existing vocoders. In particular, since the proposed method
does not involve modeling a source excitation signal and driv-
ing an articulate filter required for the existing vocoders, it is
expected to synthesize a high quality speech waveform with de-
tailed temporal structure and with phase information recovered.

In this paper, we conducted both objective and subjec-
tive evaluations, which will be described in Section 4. From
the results of objective evaluation, it was demonstrated that
the proposed method could generate high quality speech with
phase information recovered, which was lost by a mel-cepstrum
vocoder. Moreover, from the results of subjective evaluation, it
was demonstrated that the sound quality of the proposed method
was significantly improved from mel-cepstrum vocoder, and the
proposed method could capture source excitation information
more accurately.

This paper is an extended version of our earlier work [16].
We conducted further additional objective evaluation experi-
ments. We also newly conducted subjective evaluation exper-
iments and added some discussions to these results.
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(a) Conventional Vocoder [17]

(b) Proposed

Figure 1: Difference in waveform generation between conven-
tional vocoder and proposed method [16]

2. WaveNet
WaveNet [13] is a neural network which directly generates au-
dio signal. The input to the network is a sequence of wave-
form samples. WaveNet mainly consists of a stack of one di-
mensional convolution layers called dilated causal convolution
layer. The input passes through these convolution layers and
gated activation functions, and finally the softmax function out-
puts the posterior probability of waveform sample value en-
coded by µ-law algorithm [18]. The concrete form of the gated
activation function is given by following equation:

z = tanh(Wf ∗ x)⊙ σ(Wg ∗ x), (1)

where x and z is the input and output to the activation, respec-
tively. The symbol ∗ is a convolution operator and the symbol
⊙ is an element-wise product operator. σ(·) represents a sig-
moid function, and W represents a convolution weight. The
subscripts f and g represent a filter and a gate, respectively.

From a viewpoint of generative model, joint probability of
waveform sample points x = {x1, x2, . . . , xT } can be written
as

P (x | λ) =
T∏

t=1

P (xt | x1, . . . , xt−1, λ), (2)

given model parameters λ. It can be regarded that WaveNet ap-
proximately calculates the above joint probability by repetition
of linear operation by the causal convolution considering past
waveform samples and nonlinear operation by the gated acti-
vation function. Here the model parameters corresponds to the
network parameters of WaveNet. Synthesis of speech waveform
can be performed by repetition of sampling from Eq. (2) a de-
sired number of times. In this case the input to the network is
the waveform samples that it generated in the past.

3. Speaker-dependent WaveNet vocoder
Various assumptions are imposed on the conventional vocoder
as shown in Fig 1(a). First, each sample point in natural speech
waveform follows a non-stationary process. However in fact,
speech analysis is done based on the assumption of stationary
process in the analysis window. The articulate filter is realized
as a time-invariant linear filter assuming the stationary process.
The filter is driven by excitation signals and the excitation itself
is modeled under a assumption; for instance, it can be repre-
sented by pulse and white noise, or those with aperiodic com-
ponents (mixed excitation). The acoustic features are often ex-
tracted based on the assumption that speech is distributed under
a Gaussian process. However this assumption does not always

hold in real speech. Since these assumptions are combined in
existing vocoder, the detailed time structure such phase infor-
mation in the original speech will be lost more or less, and the
generated speech loses naturalness or clarity compared to the
original.

In this study, a new speech waveform synthesis method with
WaveNet is proposed. It uses the acoustic features of existing
vocoder as auxiliary features of WaveNet. Since the acous-
tic features are extracted by considering the speech generation
process, it is expected that correspondence between the speech
waveform and the acoustic features is built in the network au-
tomatically, considering the physical restrictions on the speech
generation process. Furthermore, the proposed method does not
involve driving an articulatory filter by the excitation signals,
and any mathematical assumptions to the data such as Gaus-
sianity are not also required. Therefore it is expected that high
quality speech can be synthesized which recovers detailed time
information lost by various existing vocoders. In the next and
subsequent sections, the concrete formulation of the proposed
method will be described.

3.1. Formulation

Here we extend the Eq.(2) and consider the distribution condi-
tioned by an additional variable h as a new target of modeling,
where h represents the auxiliary features. Then all the gated
activation functions shown in the network are modified as fol-
lows:

z = tanh(Wf ∗ x+ Vf ∗ y)⊙ σ(Wg ∗ x+ Vg ∗ y), (3)

where Vf is the convolution weight for the auxiliary features,
Vf ∗y and Vg ∗y represents 1×1 convolution calculation. The
variable y is an extended time series of the original auxiliary
features h where the time resolution of h is adjusted to x. In the
next section we will describe how to adjust the time resolution,
which was adopted in this study.

3.2. Time resolution adjustment

Acoustic features of a vocoder are extracted from the windowed
speech waveform. A series of the feature vectors can be ob-
tained by shifting the analysis window at regular intervals along
the time axis. The length of the series is generally shorter than
the original speech. When they are used as auxiliary features
for WaveNet, it is necessary to match the sequence length be-
tween the feature sequence and the speech waveform. In order
to adjust time resolution, the authors of the original WaveNet
paper adopted to use a transposed convolutional network and
other authors of the Deep Voice 2 paper [19] applied a stack
of bidirectional quasi-recurrent neural networks. In this study,
we adopted a relatively simple method to match both sequence
lengths of x and h, which copies the feature vector of each
frame by the shift amount of the analysis window. In other
words, the original feature vectors h will be extended along
the time axis in advance (see Fig. 2). This can be viewed as a
special form of the transposed convolution.

4. Experimental evaluation
We conducted experiments for objective evaluation and sub-
jective evaluation. In this study, mel-cepstrum and fun-
damental frequency were adopted as the auxiliary features
of WaveNet, which are acoustic features from existing mel-
cepstrum vocoder. As listed in the table 1, we varied the ex-
traction method of the mel-cepstrum and synthesis method of
speech waveform.
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Figure 2: Time resolution adjustment of auxiliary features;
frame shift is 4 points in the figure [16].

Table 1: Comparative methods of waveform synthesis; spectrum
envelop was extracted by STRAIGHT analysis.

Comparative Source of Waveform
Method mel-cepstrum Synthesis

Plain-MLSA STFT MLSA filter
STRAIGHT- Spectrum MLSA filter

MLSA envelop
Plain-WaveNet STFT WaveNet
STRAIGHT- Spectrum WaveNet

WaveNet envelop

4.1. Experimental conditions

We used speech data of four speakers in CMU-ARCTIC
database [20]; slt, bdl, clb, and rms, where slt and clb are fe-
male and bdl and rms are male. The sampling frequency is set to
16kHz. The total number of utterances is 1,132 per speaker, and
the total utterance duration is about 1 hour per speaker. For each
speaker, the 1,082 utterances were used for training the speaker
dependent network and the remaining 50 utterances were used
for evaluation. In this study, mel-cepstrum and fundamental
frequency (fo) were used as vocoder parameters. The 0-24 th
mel-cepstrum sequences were extracted from the sequence of
short time Fourier Transform of speech, or from the smoothed
spectrum obtained by STRAIGHT analysis. The fo sequences
were extracted by RAPT algorithm [21]. The length of analysis
window was 25 ms and the amount of window shift was 5 ms.

Considering one layer of dilated causal convolution, gate
activated function, and residual as one block, we connected the
30 residual blocks in total. Specifically, dilations in 10 layers
were set to 20, 21, 22, ..., 29, and this was repeated three times
to form a total of 30 dilated causal convolution layers. The num-
ber of channels of (dilated) causal convolution and 1 × 1 con-
volution in the residual block were set to 256. The number of
1×1 convolution channel between skip-connection and softmax
layer was set to 2,048. Adam algorithm [22] was used for op-
timization, and its learning rate was manually adjusted to 0.001
as an initial value, and an attenuation schedule was adjusted.
The mini-batch size was 20,000 samples and the number of pa-
rameter update was 300,000. We used Xeon(R) E5-2650 and a
single GPU of TITAN X (Pascal). It takes about 2 days to train
WaveNet for one speaker, and 6 minutes to synthesize a speech
of 3 sec from it.

4.2. Objective evaluation

We evaluated distortion between the original speech and synthe-
sized speech. The comparative methods listed in table 1 are dis-

tinguished by the source of mel-cepstrum and synthesis method.
For the objective evaluation, we first applied the following SNR
and RMSE for each frame:

SNR = 10 ln10

( ∑N
n=1 y(n)

2∑N
n=1 (x(n)− y(n))2

)
, (4)

RMSE =

√√√√ 1

F

F∑
f=1

(
20 log10

|Y (f)|
|X(f)|

)2

, (5)

where x(n) and y(n) represents the windowed synthesized
speech and natural speech at position n in a frame, respectively.
Also, X(f) and Y (f) represents the short-time Fourier trans-
form of synthesized speech and natural speech in a frame, fre-
quency bin f , respectively. | · | represents an operator for ab-
solute value. L is the total number of frames, N is the frame
length, and F is the total number of frequency bins. For both
SNR and RMSE, a linear phase compensation was performed
in advance for each frame. That is, a time shift between ±200
points that maximizes the correlation between raw and synthe-
sized speech was calculated for each frame, and applied it to
the windowed synthesized speech. The above SNR and RMSE
were calculated for each frame and averaged over total frames.

The SNR and RMSE for each speaker and comparative
method are shown in table 2, where “P” indicates “Plain”
and “ST” indicates “STRAIGHT” in accordance with table 1.
Each numerical value in the table represents the 95% confi-
dence interval (mean and lower/upper bound). It can be seen
that WaveNet vocoder could improve SNR. On the other hand,
RMSE could not be improved, which was especially the case
in ’slt’ or ’clb’. We also tested the statistical significance of
improvement. From the test at significance level 5%, we con-
firmed that both SNRs of “Plain-WaveNet” and “STRAIGHT-
WaveNet” were improved significantly for all speakers.

Next, in order to confirm whether WaveNet can reproduce
the characteristics of original speech, we applied STRAIGHT
analysis to the synthesized speech and extracted mel-cepstrum,
and RAPT algorithm to extract fo. Then we evaluated ob-
jectively the distortion of the acoustic features between raw
and synthesized speech. For mel-cepstrum, following Mel-
Cesptrum Distance (MCD) was applied:

MCD =
10

log 10

√√√√2

M∑
m=1

(cr(m)− cs(m))2, (6)

where cr and cs is mel-cepstrum from raw and synthesized
speech, respectively, and M is order of mel-cepstrum. For fo,
following RMSE were applied:

RMSE(fo) = 1200
√

(log2(Fr)− log2(Fs))2, (7)

where the subscript r and s represents raw and synthesized
speech, respectively. The above MCD and RMSE were cal-
culated for each frame and averaged over total frames.

The distortions between acoustic features from natural and
synthesized speech are shown in table 3. First, from table 3(a),
it can be seen that MCDs of the proposed method were de-
teriorated from mel-cepstrum vocoder, which means it could
not reproduce the original spectrum. Next, from table 3(b), it
can be seen that “Plain-WaveNet” could reproduce the origi-
nal fo with the relatively higher accuracy than mel-cepstrum
vocoder. Finally, table 4 lists unvoiced/voiced (U/V) decision
errors. This error is the ratio of the number of unmatched U/V
frames between natural and synthesized speech to total frames.
It was demonstrated that the proposed method could capture
the U/V information with relatively higher accuracy except slt,
compared to the mel-cepstrum vocoder.
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Table 2: Comparison of distortion between natural speech and synthesized speech
(a) SNR (dB); distortion in time domain

Method slt bdl clb rms

MLSA (P) −0.24± 0.31 −2.7± 0.19 −0.044± 0.35 −2.2± 0.52
MLSA (ST) 3.7± 0.32 −2.6± 0.16 −1.9± 0.31 −2.3± 0.45
WaveNet (P) 4.1 ± 0.23 3.6 ± 0.21 3.8 ± 0.38 4.0 ± 1.0

WaveNet (ST) 3.7 ± 0.32 2.2 ± 0.28 3.7 ± 0.32 2.6 ± 0.94

(b) RMSE (dB); distortion in frequency domain

slt bdl clb rms

7.9 ± 0.13 7.9 ± 0.21 7.8 ± 0.23 8.1 ± 0.97
8.3 ± 0.31 8.6 ± 0.48 7.9 ± 0.43 8.4 ± 0.53
8.8 ± 0.21 8.6 ± 0.21 9.2 ± 0.30 9.0 ± 1.3
9.0 ± 0.35 9.4 ± 0.30 9.1 ± 0.28 9.5 ± 1.3

Table 3: Comparison of distortion between acoustic features of natural speech and synthesized speech
(a) Mel-cepstrum (MCD; dB)

Method slt bdl clb rms

MLSA (P) 3.8± 0.027 3.8± 0.050 4.6± 0.050 3.6± 0.054
MLSA (ST) 2.4 ± 0.047 2.3 ± 0.054 2.5 ± 0.049 2.5 ± 0.059
WaveNet (P) 5.5± 0.052 5.5± 0.050 6.8± 0.11 4.9± 0.053

WaveNet (ST) 5.7± 0.045 5.7± 0.053 6.8± 0.045 5.1± 0.052

(b) Fundamental frequency (RMSE; cent)

slt bdl clb rms

2.9 ± 0.21 9.4 ± 1.6 2.4 ± 0.19 6.4 ± 0.63
2.7 ± 0.18 8.7 ± 1.6 2.1 ± 0.13 6.2 ± 0.79
1.9 ± 0.22 7.5 ± 1.6 1.1 ± 0.087 3.7 ± 1.4
2.3 ± 0.13 9.7 ± 2.0 1.1 ± 0.13 5.6 ± 1.5

Table 4: Comparison of voiced/unvoiced decision error (%)

Method slt bdl clb rms

MLSA (P) 1.7 ± 0.19 4.8 ± 0.40 2.5 ± 0.27 4.8 ± 0.44
MLSA (ST) 1.7 ± 0.19 5.0 ± 0.44 2.3 ± 0.23 4.7 ± 0.47
WaveNet (P) 2.1 ± 0.32 2.9 ± 0.29 1.7 ± 0.28 3.1 ± 0.31

WaveNet (ST) 3.1 ± 0.39 4.2 ± 0.41 1.8 ± 0.39 4.1 ± 0.48

4.3. Subjective evaluation

We evaluated the sound quality of the synthesized speech us-
ing a mean opinion score (MOS). The subjects rated the quality
of the synthesized speech using a 5-point scale: “5” for excel-
lent, “4” for good, “3” for fair, “2” for poor, and “1” for bad.
The number of evaluation sentences in each subject was 100;
25 sentences × 4 methods. The number of subjects was 15 and
they are all non-native speakers of English.

Figure 3 indicates the results of the MOS test for sound
quality. The error bar represents 95% confidence interval. It
can be seen that the proposed method could generate high qual-
ity speech compared to the mel-cepstrum vocoder. The signif-
icant difference between “Plain-WaveNet” and “STRAIGHT-
WaveNet” could not be confirmed for the averaged scores. This
result suggests that the proposed method can compensate the
degradation of the acoustic feature caused by applying STFT
spectrum as a source of mel-cepstrum. While the synthesized
speech from male speakers (bdl and rms) achieved high quality,
that from female speakers (slt and clb) achieved relatively low
quality. We have already confirmed that, the noise contained in
the synthesized speech, which is caused by the waveform pre-
diction error of WaveNet, was relatively and strongly perceived
for the two female speakers. It is considered that this noise af-
fected the evaluation scores.

5. Conclusions
In this study, we proposed speaker-dependent WaveNet vocoder
which utilizes acoustic features of an existing vocoder as aux-
iliary features of WaveNet. The advantage of the proposed
method is that it does not require explicit modeling of excita-
tion signals and various assumptions specific to speech gen-
eration process and speech analysis. The experimental results
demonstrated that the proposed method could recover phase in-
formation which was lost by existing mel-cepstrum vocoder. It
was also demonstrated that the sound quality of the proposed
method was significantly improved compared to mel-cepstrum
vocoder, and the proposed method could capture source excita-

Figure 3: Sound quality of synthesized speech

tion information more accurately.
The original WaveNet paper describes that the speaker de-

pendent WaveNet for TTS was trained by using speech data
over 20 hours and successfully synthesized high-quality speech
close to natural one. Although detailed information about train-
ing time for the network and the author’s implementation are not
described in the original paper, it can be supposed that abundant
computer resources were required to carry out the training. In
this paper, we have shown the reference of the achieved sound
quality when using a small amount of speech data about 1 hour
per speaker and limited computer resources. We expect that
this reference will be a beneficial information for researchers
and practitioners in related research fields who plan to adopt the
WaveNet vocoder and incorporate it into their own applications.

Future works include additional investigations on the effec-
tiveness of the proposed method when target vocoder and cor-
responding acoustic features are changed. Moreover, develop-
ment of a technique to alleviate the noise caused by prediction
error of WaveNet will be also a future work.
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