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Abstract 

Iterative adaptive inverse filtering (IAIF) [1] remains among 

the state-of-the-art algorithms for estimating glottal flow from 

the recorded speech signal. Here, we re-examine IAIF in light 

of its foundational, classical model of voiced (non-nasalized) 

speech, wherein the overall spectral tilt is caused only by lip-

radiation and glottal effects, while the vocal-tract transfer 

function contains formant peaks but is otherwise not tilted. In 

contrast, IAIF initially models and cancels the formants after 

only a first-order preemphasis of the speech signal, which is 

generally not enough to completely remove spectral tilt. 

Iterative optimal preemphasis (IOP) is therefore proposed 

to replace IAIF's initial step. IOP is a rapidly converging 

algorithm that models a signal (then inverse-filters it) with one 

real pole (zero) at a time, until spectral tilt is flattened. IOP-

IAIF is evaluated on sustained /a/ in a range of voice qualities 

from weak-breathy to shouted-tense. Compared with standard 

IAIF, IOP-IAIF yields: (i) an acceptable glottal flow even for 

a weak breathy voice that the standard algorithm failed to 

handle; (ii) generally smoother glottal flows that nevertheless 

retain pulse shape and closed phase; and (iii) enhanced 

separation of voice qualities in both normalized amplitude 

quotient (NAQ) and glottal harmonic spectra. 

Index Terms: speech analysis, glottal inverse filtering, 

optimal preemphasis 

1. Introduction 

Glottal inverse filtering refers to the process of estimating the 

source of voiced speech sounds (the glottal volume-velocity 

waveform, known as glottal flow), most conveniently and non-

invasively from the acoustic pressure signal recorded by a 

microphone. The approach common to most algorithms 

proposed over the past six decades [2], is to remove the 

acoustic effects of the supralaryngeal system by some kind of 

modeling followed by filtering of the speech signal through 

the inverse of the model, thus leaving only the laryngeal 

(excitation or source) signal. 

However, while several techniques exist for measuring 

various aspects of glottal kinematics, glottal flow itself has 

never been directly measured, and so there is no absolute 

ground-truth data with which to compare the results of inverse 

filtering algorithms. Despite this seemingly dire situation, 

researchers have a basic conception of what types of estimated 

glottal flow reasonably conform (or not) with expectations 

regarding the physics of vocal-fold oscillation; e.g., the two 

most common criteria are the relative absence of time-domain 

ripples that are caused by incomplete cancelation of formants, 

and the presence of a relatively flat portion of the waveform 

during the closed phase. Meanwhile, ongoing research tries to 

improve quantification of the quality of estimated flow [3] and 

to automate experts' subjective choices [4]. 

One of the most widely used algorithms for glottal inverse 

filtering, and one that is still regarded as an important 

benchmark [5], is iterative adaptive inverse filtering (IAIF) [1]. 

It is founded on the classical model of speech production as a 

linear cascade of three processes (at least for non-nasalized 

voiced sounds) [6]: G, the glottal source which provides the 

volume-velocity excitation; V, the vocal-tract airway that 

imparts resonances which appear as formant peaks in the 

spectrum; and L, the lip-radiation effect which is essentially a 

differentiator converting volume-velocity at the lips to farfield 

acoustic pressure. Thus in the z-domain, the recorded speech 

sound S is written as: 

 )()()()( zLzVzGzS  , (1) 

where lip-radiation is of the form: 

 
11)(  bzzL ,   10  b . (2) 

Assuming fixed values for lip-radiation coefficient b and 

vocal-tract autoregressive model order M, IAIF is an 

automatic algorithm that, in two main iterations, tries to model 

(by linear prediction analysis) and cancel (by inverse filtering) 

V and L, in order to leave only G. In practice, to get the best 

estimate of glottal flow one usually runs IAIF for a range of 

values of b and M, then chooses the result that best satisfies 

certain criteria as mentioned earlier (whether subjective as is 

most often the case, or partly automated as, e.g., in [7]). 

A fundamental property of the separated speech model is 

that the overall spectral tilt of the recorded pressure signal is a 

combination of a downward tilt imparted by G (the degree of 

tilt dependent on laryngeal voice quality) and an upward tilt 

imparted by L (dependent on lip aperture), with no explicit 

contribution by V to overall spectral tilt. Indeed, as evidenced 

in key literature, e.g. [6, Fig. 1.3-1] [8, Fig. 3.23], the volume-

velocity transfer function of an idealized V does not have an 

overall tilt, other than that which occurs as a result of a non-

uniform distribution of formant frequencies and/or bandwidths. 

The classical view is further supported by more recent 

acoustic measurements and simulations using physical vocal-

tract models, e.g. [9, Fig. 4] [10, Fig. 5]. 

To be consistent with this view, modeling of V ought to be 

performed only after having removed any existing spectral tilt. 

However, prior to modeling of V, as a first step IAIF tries to 

approximately cancel the combined effects of G and L by only 

1st-order autoregressive modeling and inverse filtering. A 

2nd- or higher-order model is wisely not used in the first step, 

because that would unintentionally remove one or more of the 
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vocal-tract resonances; a 1st-order model is used to ensure a 

single, real pole at DC, which represents mainly spectral tilt. 

Nevertheless, in light of the classical assumptions, the 

question arises whether a 1st-order model is sufficient in 

general to achieve a flat-tilted, V-only transfer function. To 

achieve better consistency with the classical model, here we 

propose to replace IAIF's first step with iterative optimal 

preemphasis which, as explained in section 3, guarantees a 

signal with flat spectral tilt over the available frequency range. 

2. Speech Data & Preprocessing 

The speech material recorded for this study was /a/ sustained 

for about 1.5 s by an adult, male speaker, in each of five voice 

qualities along a continuum from weak & breathy, to loud & 

tense: (i) weak and breathy voice, (ii) breathy voice, 

(iii) modal voice, (iv) loud and slightly tense voice, and 

(v) shouted and tense voice. The vowel /a/ was chosen as it is 

usually a good candidate for glottal inverse filtering, due to its 

first formant being separated from the fundamental frequency. 

For high signal-to-noise ratio and low amplitude and phase 

distortions, the speech data were recorded in a sound-treated 

room, with a condensor microphone (B&K 4190) at a constant 

distance of about 25 cm from the speaker's lips; a conditioning 

amplifier (B&K Nexus) set to unity gain; and an audio 

interface (RME Babyface Pro) connected to a laptop PC, with 

44.1 kHz sampling rate and 24 bits/sample. (To hear the 

recordings, please refer to the accompanying MP3 audio files.) 

Prior to inverse filtering, the recorded signal's polarity was 

corrected by negation, the signal was downsampled to a lower 

rate of 8 kHz [11], and a linear phase high-pass filter with a 

70 Hz cut-off was applied to suppress any low-frequency 

ambient disturbances. One representative frame of duration 

50 ms was located one-third of the way into the voiced 

segment of each sustained /a/. 

Each /a/ token was produced at a fundamental frequency 

that was natural and comfortable for the corresponding 

loudness and voice quality (cf. Table 1). Also listed in Table 1 

is the signal energy in each analysis frame: as expected, 

calculated energy increased monotonically from the softest to 

the loudest utterance, with an overall dynamic range of 29 dB. 

3. Iterative Optimal Preemphasis (IOP) 

Optimal preemphasis (OP) is often used as an initial step in 

speech processing, motivated by the fact that, in reducing 

overall tilt, it tends to reduce the spectral dynamic range and 

improve the stability of subsequent modeling and feature 

extraction [12, p. 216] [13, p. 574]. However, the spectral tilt 

of voiced sounds depends not only on the individual speaker 

and gender, but also varies considerably with vocal effort and 

laryngeal voice quality [14-16]. Therefore, OP can certainly 

reduce, but rarely eliminate, spectral tilt. 

As is well known, OP involves modeling the signal with 

1st-order linear prediction (LP) analysis (i.e., a single pole at 

a1 = R1 / R0 on the real axis in the z-plane, where Rn is the 

autocorrelation at lag n samples), then filtering the signal with 

the inverse of the obtained model (1 − a1z
−1, which imposes a 

zero at the same location in the z-plane) [17, p.215]. However, 

even the most aggressive preemphasis with a1 = 1.0 is only 

able to modify the spectral tilt by up to 6 dB/oct, which may 

not be enough to achieve zero tilt. This view is supported by 

the simple observation that, after applying OP to a frame of 

speech, a new value for a1 computed from the preemphasized 

signal will generally not equal zero; this implies, as mentioned 

above, that only one application of OP is generally insufficient 

to remove spectral tilt. 

We have found that repeated application of OP, here 

termed iterative optimal preemphasis (IOP), yields a 

monotonically decreasing sequence of |a1| that converges 

towards 0. In practice, it is useful to stop the iterations by 

setting a threshold (e.g., as soon as |a1| < 0.001), and the 

resulting signal can then be considered to have a flat overall 

spectral tilt. More precisely, in contrast to OP, IOP completely 

removes the speech signal's autocorrelation at lag 1 sample. 

Fig. 1 shows an example of the log-power spectrum of /a/ 

with normal (modal) phonation, and the contrast between 

conventional OP and IOP. The thin lines joining the spectral 

peaks depict the outline of the measured harmonic spectrum. 

The dotted lines display the harmonic spectrum after OP, with 

a1 = 0.944; evidently, there remains a downward spectral tilt. 

In contrast, the thick lines show the harmonic spectrum after 

IOP, which in this case converged in just 6 iterations with the 

following sequence of a1 values: 0.944, 0.749, 0.341, 0.070, 

0.016, and 0.004; the next value for |a1| was less than 0.001, 

implying that in terms of real-pole LP modeling the log-power 

spectrum was optimally flat-tilted. 

One of many possible methods of quantifying spectral tilt, 

is to perform linear regression on the spectral harmonics on a 

Voice Quality F0 (Hz) Energy (dB re:Modal) preemphasis coefficients a1 yielded by IOP (bold font: OP) 

Shouted & Tense 161 19.6 0.751, 0.446, 0.128, 0.037, 0.012, 0.004, 0.001 

Loud 161 13.7 0.823, 0.577, 0.220, 0.064, 0.021, 0.007, 0.002 

Modal 128 0 0.944, 0.749, 0.341, 0.070, 0.016, 0.004 

Breathy 116 −6.1 0.991, 0.858, 0.121, 0.008 

Weak & Breathy 134 −9.4 0.993, 0.898, 0.248, 0.047, 0.008, 0.001 

Figure 1. Effects of conventional OP and proposed IOP, 

on harmonic spectrum of /a/ (modal voice). 

Table 1. Fundamental frequency of voicing, energy, and a1 sequence yielded by IOP, for each of the 5 recorded voice qualities. 
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log frequency scale. Such analysis on the spectra in Fig. 1 

yielded −13.1 dB/oct for the original harmonics, −8.0 dB/oct 

after OP (a reduction by only 5.1 dB/oct, as expected), and 

−2.0 dB/oct after IOP (this value is not exactly 0, because as 

mentioned, there are many ways of measuring tilt). These 

numbers confirm that IOP reduces spectral tilt more 

effectively than conventional OP. 

The sequence of a1 values yielded by IOP for each voice 

quality is listed on the right side of Table 1. The first value (in 

bold font) matches a1 for conventional OP. By comparison, 

IOP rapidly converged within 4 to 7 iterations. Interestingly, 

both the first and second values of a1 vary monotonically with 

voice quality, indicating stronger preemphasis required for 

weak & breathy voice and weaker preemphasis for shouted & 

tense voice, as expected. 

It is worth noting that, just as IAIF may use either 

conventional LP analysis or more sophisticated, discrete all-

pole modeling (DAP) [18], IOP can also operate either 

directly on a frame of speech signal (with Rn calculated by 

time-domain autocorrelation) or on a discrete, harmonic power 

spectrum (with Rn calculated by discrete Fourier 

transformation). This study uses LP modeling and time-

domain autocorrelation; the potential for discrete spectral 

modeling to yield greater accuracy is left for future work. 

4. Preliminary evaluation of IOP-IAIF 

We now compare the performance of standard- and IOP-IAIF 

(i.e., before / after replacing 1st-order LP modeling with IOP), 

in glottal inverse filtering of the five recordings. In all cases, 

the order of LP analysis for glottal flow modeling was set to 4. 

To allow meaningful comparison of estimated glottal flow 

amplitudes across different vocal efforts or voice qualities, we 

ensured a constant mouth-to-microphone distance, and our 

implementation of IAIF included level adjustment of the 

vocal-tract LP model to enforce unity gain at DC [19]. Indeed, 

from the weakest to the loudest vocalization, Fig. 2 shows that 

the estimated glottal flows increase monotonically in both 

peak-to-peak amplitude and steepest negative slope — two 

parameters that are known to be related with the amplitude of 

the fundamental and the speech sound pressure level, 

respectively [20]. 

Independently for each analysis we varied the vocal-tract 

model order M (from 8 to 18, in steps of 2) and lip-radiation 

coefficient b (from 0.80 to 0.99, in steps of 0.01) in search of 

the best result, i.e., a glottal flow best satisfying the two 

subjective criteria stated in section 1, and a vocal-tract model 

spectrum with no spurious (non-formant) peaks. This proved 

successful in 8 cases out of 10; the two problematic cases were 

standard IAIF analyses of breathy, and weak & breathy voice. 

For breathy voice, the glottal flow estimated by standard 

IAIF (second from the bottom in Fig. 2) appeared to be not 

unreasonable; but the final vocal-tract LP model (cf. Fig. 3a) 

showed a spurious peak far below the first formant, in the 

vicinity of the first two harmonics. 

More critically, as shown in the bottom left waveform of 

Fig. 2, standard IAIF did not offer any reasonable glottal flow 

Figure 2. Glottal flow waveforms estimated by standard- vs IOP-IAIF. Amplitude scales are identical in both panels; waveforms 

were shifted in amplitude for visual clarity. From top to bottom: shouted & tense, loud, modal, breathy, weak & breathy. 

Figure 3. Vocal-tract spectra and LP models for breathy 

voice (a & b) and weak & breathy voice (c & d). 
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for weak & breathy voice. The reason for this is shown in 

Fig. 3c: the vocal-tract LP model erroneously included a sharp 

peak at the fundamental, as it clearly dominated the spectrum. 

In contrast, Fig. 3d shows that IOP not only flattened the 

spectral tilt but also effectively suppressed the fundamental, 

resulting in a more reasonable modeling of only the formants. 

Consequently, IOP-IAIF yielded a nearly sinusoidal glottal 

flow (cf. bottom right of Fig. 2), which is characteristic of a 

fundamental-dominated, weak & breathy voice. 

Moving up in Fig. 2 to modal, loud, and shouted voices, it 

is clear that IOP-IAIF yielded consistently smoother 

waveforms, almost free of the jagged, noisy behavior seen 

especially in the closed phase of glottal flow yielded by 

standard IAIF. It is important to note that this property of IOP-

IAIF glottal flows is not the same as merely smoothing the 

standard-IAIF waveforms; rather, owing to the flattening of 

spectral tilt, IOP-IAIF yields a vocal-tract model that is at least 

subtly, and as shown in Fig. 3 sometimes radically, different 

compared with the corresponding model in standard IAIF. 

Therefore, IOP-IAIF glottal flow appears smoother not only 

due to spectral tilt, but also due to the fine balance among 

harmonic amplitudes thanks to improved vocal-tract modeling. 

The waveforms in Fig. 2 also indicate that while the IOP-

IAIF glottal flows are smoother, they retain important features 

such as the breathy-to-tense tendency towards smaller open-

quotients and faster closing-speeds. The normalized amplitude 

quotient (NAQ) is a well-known parameter that has been 

shown to be related to voice quality variations along the 

breathy-to-tense continuum [21]. Fig. 4 shows the mean of 

NAQs extracted from the central 3 to 5 periods of each 

estimated glottal flow (NAQ for weak & breathy voice 

analyzed by standard IAIF is not included because the glottal 

flow in this case was simply meaningless). In line with the 

literature, the values in Fig. 4 indicate that breathy voice has 

higher NAQ while tense voice has lower NAQ, with modal 

voice in between. While NAQ calculated from IOP-IAIF 

glottal flows are consistently slightly higher (towards the 

breathy side) compared with standard IAIF, Fig. 4 also shows 

that they are better separated among the voice qualities: even 

excluding weak & breathy voice, the range (and ratio) of NAQ 

for breathy versus shouted was 0.10 (1.98) for standard IAIF, 

and 0.16 (2.32) for IOP-IAIF. Moreover, among the 3-5 glottal 

pulses analyzed in each case, the standard deviation of NAQ 

was on average 0.016 for standard IAIF, and only 0.005 for 

IOP-IAIF; this suggests that IOP-IAIF can provide greater 

consistency in the shape of consecutive glottal pulses 

estimated within one analysis frame. 

Finally, Fig. 5 compares the glottal harmonic spectra of 

the five voice qualities across analysis conditions. To 

emphasize the effects of voice quality on spectral balance 

rather than overall sound pressure level, each spectrum (on 

which the harmonics were measured) was normalized to an 

energy of 0 dB. Thanks to optimal flattening of vocal-tract 

spectral tilt, IOP-IAIF allocated a steeper tilt to glottal spectra; 

hence the smoother glottal flows in Fig. 2. Furthermore, even 

ignoring standard-IAIF's erroneous result for weak & breathy 

voice, the IOP-IAIF glottal harmonic spectra clearly show a 

better separation of the five voice qualities — i.e., a greater 

dynamic range at most frequencies; and a clear progression of 

the glottal component of spectral tilt, from weak & breathy 

(most tilted) to shouted & tense (least tilted). 

5. Conclusions 

This study proposed iterative optimal preemphasis (IOP) as a 

replacement for 1st-order LP modeling in the first step of the 

IAIF glottal inverse filtering algorithm. The motivations for 

this are grounded in the acoustic theory of speech production, 

wherein the ideal transfer function of the vocal-tract, separated 

from glottal and lip-radiation effects, has no overall tilt. IOP is 

a rapidly converging algorithm that removes the speech 

signal's autocorrelation at lag 1 sample, thereby removing 

spectral tilt across the available frequency range. 

The proposed method (IOP-IAIF) was evaluated by 

comparing its performance with standard IAIF, on a small 

dataset of sustained /a/ in five distinct voice qualities. In the 

time domain, estimated glottal flows were smoother, while 

retaining pulse shape, skewness, and the relatively flat 

portions of the closed phase. Moreover, the NAQ parameter 

calculated from the estimated flow signals retained a 

monotonic relation with voice quality and an expanded range 

from tense to breathy voice. In the frequency domain, the 

glottal harmonic spectra also showed a wider dynamic range 

and better separation among the voice qualities. 

Although the evaluation here was limited in terms of the 

size and scope of the speech data, these preliminary yet in-

depth results are promising. As both standard- and IOP-IAIF 

still require a human expert to judge and select the best results, 

more extensive evaluations with larger datasets including 

speakers of both genders, different vowels, and a greater 

variety of voice qualities and fundamental frequencies, will be 

important but labor-intensive. We hope that this study can 

stimulate further research on improving and automating glottal 

inverse filtering algorithms, for both basic and applied studies 

of the human voice. 

Figure 4. Mean values of normalized amplitude quotient 

(NAQ) in 3-5 central periods of estimated glottal flow. 

Figure 5. Energy-normalized harmonic spectral envelopes 

of estimated glottal flow. 
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