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Abstract
This paper describes the effectiveness of knowledge distillation
using teacher student training for building accurate and com-
pact neural networks. We show that with knowledge distilla-
tion, information from multiple acoustic models like very deep
VGG networks and Long Short-Term Memory (LSTM) mod-
els can be used to train standard convolutional neural network
(CNN) acoustic models for a variety of systems requiring a
quick turnaround. We examine two strategies to leverage multi-
ple teacher labels for training student models. In the first tech-
nique, the weights of the student model are updated by switch-
ing teacher labels at the minibatch level. In the second method,
student models are trained on multiple streams of information
from various teacher distributions via data augmentation. We
show that standard CNN acoustic models can achieve compa-
rable recognition accuracy with much smaller number of model
parameters compared to teacher VGG and LSTM acoustic mod-
els. Additionally we also investigate the effectiveness of using
broadband teacher labels as privileged knowledge for training
better narrowband acoustic models within this framework. We
show the benefit of this simple technique by training narrow-
band student models with broadband teacher soft labels on the
Aurora 4 task.
Index Terms: Speech recognition, knowledge distillation,
teacher-student, CNN, VGG, LSTM, bandwidth

1. Introduction
Automatic speech recognition has been shown to benefit by
combining information at multiple levels of the acoustic model-
ing pipeline. These strategies include combining various acous-
tic feature sets together at the input of acoustic models, joint
training of complex acoustic models after fusing various neural
network architectures [1, 2] and combination of acoustic scores
predicted at the output of various acoustic models. In addition to
this, significant performance improvements have been obtained
by augmenting the training data with various kinds of variabili-
ties - for example with several kinds of noises at different SNR
levels - instead of just using clean training data, to train acoustic
models. While these techniques can be used to train complex
acoustic models, it is often the case that these models cannot
be deployed for real-time decoding of streaming speech data
because of constraints they pose in terms of latency and com-
putation resources [3]. More recently to tackle this limitation,
compact models have been trained via knowledge distillation or
model compression.

In the knowledge distillation framework, instead of train-
ing models which had reduced computational requirements and
improved latency performances directly on hard targets in a
single step, training is now performed in two separate steps
[4, 5, 6, 7, 8, 9, 10]. In the first step, complex teacher acous-

tic models are first trained by combining information at various
levels as described above. Compact acoustic models or student
networks are then trained on the soft outputs of teachers using
training criteria that minimize the differences between the stu-
dent and teacher distributions. This technique has been shown
to be very successful in various settings - fully supervised [9],
semi-supervised [6], multilingual [11], sequence training [12]
- to train student networks perform better than training similar
models from scratch using hard targets.

To improve the performance of student networks, more re-
cent work has focused on techniques to leverage information
from multiple teachers by training student networks on an en-
semble of teachers. [7] uses temparature to balance different
teachers. In other approaches, [13] uses oracle to select the
best teacher ensemble for each utterance while in [14] both
temparature and multitasking are used to combine teacher la-
bels and original hard labels. In these approaches, ensem-
bles of teachers are created by first combining the outputs of
complimentary teacher networks trained on multiple input fea-
tures/architectures/training criteria into a single output distribu-
tion and then training student networks on the combined output
to learn this ensemble distribution. Although this approach al-
lows the student network to learn better distributions that even-
tually led to lower error rates, the student network is not pre-
sented directly the individual complimentary teacher distribu-
tions. We hypothesize that if student networks are provided
with multiple streams of information via the various teacher
distributions, the student will observe various ”views” of the
data and will be able to generalize better while at the same
time capture complimentary information available in each of
the teacher streams. To facilitate this, we combine the distil-
lation framework with a simple data augmentation strategy. In
this approach, instead of augmenting data using various kinds of
signal distortions to the input acoustic features as is often done,
we augment the training data by creating multiple copies of data
with corresponding soft output targets from various teachers.
We demonstrate the effectiveness of our approach by training
compact CNN based student networks that perform better than
similar models trained on combined outputs from an ensemble
of teachers - an LSTM based teacher and a VGG based teacher.

We extend this proposed technique to the generalized dis-
tillation framework, where in addition to distillation of infor-
mation from teacher networks, privileged information available
only during training is also factored in. To illustrate the effi-
cacy of our approach we show how an improved narrow band
CNN based acoustic model can be trained by using privileged
information from outputs of broadband models, instead of train-
ing the student network on only narrow band teacher models.
Privileged information is presented to the student network not
only via both an ensemble of teachers but also by data augmen-
tation of training data as described earlier. The training data
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for this task is created using soft targets from an ensemble of
narrow band teachers, an ensemble of broad band teachers and
also hard targets. We show that while the proposed approach
performs better than conventional training with hard targets, it
improves over training on teacher ensembles which have been
combined to form a single teacher stream and also benefits from
privileged knowledge.

In section 2 we describe the teacher-student distillation
framework and training procedure and introduce improvements
to this framework via data augmentation of teacher ensemble
outputs. Section 3 outlines various experiments on the Aurora 4
task that demonstrate the usefulness of our proposed techniques.
The paper concludes with a discussion in section 4.

2. Ensembles of multiple teachers
Various algorithms have been proposed for transferring knowl-
edge from teacher models to student models as described ear-
lier. Instead of using the ground truth labels, the teacher-student
training approach defines the loss function as

L(θ) = −
∑
i

qi log pi, (1)

where qi is the so-called soft label of the teacher model, which
works as a pseudo label. pi is output probability of the class of
the student model. In qi, the competing classes will have small
but nonzero posterior probabilities for each training example.
In a conventional method using multiple teacher models, soft
labels qi are created by weighted ensembles of posteriors from
each teacher model as

qi =
∑
k

wkqik, (2)

where wk ∈ [0, 1] is the interpolation weight. qik is the soft
label of k-th teacher. This technique is described below.

Algorithm 1 intepolated-training

for all minibatches in training data do
pick minibatch i;
for all teachers in pool of teachers do

use teacher j to provide soft-targers for minibatch i;
end for
combine soft-targets from all teachers with preassinged
weights wj for each teacher;
update neural network model with minibatch i;

end for

Though this is one of reasonable methods to use multiple
teachers [13], the interpolation method weakens the com-
plimentariness obtained by multiple models. Dissimilarities
between acoustic models should be more explicitly main-
tained/leveraged to make student model represent various char-
acteristics.

In this paper, we propose two additional techniques to train
better student models. In the first method that we call switched-
training, for each minibatch, soft-targets corresponding to the
data are derived from a randomly selected teacher. The weights
of the student model hence updated by switching teacher labels
qik at the minibatch level as shown in algorithm 2. In contrast
to the intepolated-training technique no predetermined weights
are used to combine the outputs from multiple teachers.

In our second method we extend the switched-training tech-
nique with data augmentation by producing multiple copies of

Algorithm 2 switched-training

for all minibatches in training data do
pick minibatch i;
randomly select a teacher j from the pool of teachers to
provide to provide soft-targets for minibatch i;
update neural network model with minibatch i;

end for

Algorithm 3 augmented-training

for all minibatches in training data do
pick minibatch i;
for all teachers in pool of teachers do

use teacher j to provide soft-targets for minibatch i;
update neural network model with minibatch i;

end for
end for

the data with soft-targets from multiple teachers and training
on all the created data. This technique allows the network to
train on multiple data views of the data and differs from con-
ventional data augmentation where the input features are trans-
formed keeping the labels the same. The augmented-training
method is illustrated in algorithm 3.

3. Experiments
3.1. Baselines

The proposed training techniques are evaluated using a series
of experiments using several public data sets. In our first set of
experiments (Section 3.2) we explore the training of various stu-
dent models using multiple teachers trained on a medium size
speech corpus. In a second set of experiments (Section 3.3) we
investigate how ASR performance can be improved with priv-
iledged information using NN acoustic models trained on dif-
ferent spectrum bandwidths.

For the first set of experiments, neural network based acous-
tic models are trained on 500 hours of audio data. 50% of this
training corpora is clean audio from three public corpora - 100
hours from broadcast news, 100 hours from Mixer 6 [15], and
20 hours from the AMI corpus [16] and 30 hours of private
speech data. The corpora is further augmented with realistic en-
vironmental noises from the JEIDA corpus [17] and impulse re-
sponses from RWCP [18] at various SNRs between 5 to 20 dB.
CNN based acoustic models are trained on this multi-condition
training set with 40 dimensional log Mel-frequency spectra aug-
mented with ∆ and ∆∆s as inputs. The log Mel-frequency
spectra are extracted by first applying mel scale integrators on
power spectral estimates in short analysis windows (25 ms) of
the signal followed by the log transform. Each frame of speech
is also appended with a context of 11 frames after applying a
speaker independent global mean and variance normalization.
The CNN systems use two convolutional layers with 128 and
256 hidden nodes each in addition to four fully connected lay-
ers with 2048 per layer to estimate posterior probabilities of
9300 output targets. All of the 128 nodes in the first feature
extracting layer are attached with 9×9 filters that are two di-
mensionally convolved with the input log Mel-filterbank repre-
sentations. The second feature extracting layer with 256 nodes
has a similar set of 3×4 filters that processes the non-linear ac-
tivations after max pooling from the preceding layer. The non-
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Table 1: Comparing CNN trained with hard targets and student
CNN learned from VGG and LSTM on the Aurora 4 task.

Model Target AVG WER
CNN hard 13.3
VGG hard 10.5
LSTM hard 11.7
CNN: VGG soft 11.6
CNN: LSTM soft 12.8
CNN: VGG+LSTM soft/interpolation 11.4
CNN: VGG+LSTM soft/switching 11.2

Table 2: Comparing Compact CNN trained with hard targets
and student CNN learned from VGG and LSTM.

Model Target Aurora 4
Compact CNN hard 15.1
Compact CNN: VGG soft 13.6
Compact CNN: VGG+LSTM soft/switching 13.2

linear outputs from the second feature extracting layer are then
passed onto the subsequent fully connected layers. All the lay-
ers use the sigmoid non-linearity.

In addition to these baseline CNN models we attempt to
also train compact yet accurate acoustic models with a good de-
coding speed. We try to construct compact CNN acoustic mod-
els for a quick turnaround of decodings by using the knowledge
distillation framework with multiple teacher models. The com-
pact CNN acoustic models have two convolutional layers with
64 and 128 hidden nodes followed by two fully connected lay-
ers with 768 hidden units in each layer. Both the classes of
CNN models are trained on both hard targets and also with soft
targets using the student-teacher framework. We evaluate the
effectiveness of our proposed methods primarily on the Aurora
4 task using the task-standard WSJ0 bigram language model.

3.2. Training with an ensemble of teachers

Student CNN models are learned from two teacher NNs with
methods described in Section 2. One of the teachers is a VGG
model comprising 10 convolutional layers, with a max-pooling
layer inserted after every 3 convolutional layers, followed by
4 fully connected layers. All hidden layers have ReLU non-
linearity. Batch normalization is also applied to every fully con-
nected layers. The second teacher is LSTM model consisting of
4 bidirectional LSTM layers with 512 units per direction and a
linear bottleneck layer with 256 units. The two teacher models
were sequence trained after the models were constructed with
a cross entropy criterion. The training data for the teachers are
the same as baselines. The WER performance of two teachers
and the baseline CNN model using hard labels are shown in the
first part of Table 1.

Posteriors of top 50 most likely labels for each prediction
of the teacher are then used to train student CNN networks us-
ing the interpolated-training and switched-training methods de-
scribed earlier. In these experiments we do not interpolate the
teacher’s label with the original labels. The KL-divergence cri-
terion used for training the student model is equivalent to min-
imizing the cross entropy of the soft target labels. The student
models of both standard and compact CNNs start from random
initialization, learning from the soft labels provided by the VGG
and LSTM models.

Table 1 shows the experimental results of training various
student networks. As seen in the table, accuracies of the stu-

Table 3: Performance of narrowband and broadband baseline
CNN and teacher models on the Aurora 4 task.

Models A B C D AVG
Matched CNN-8k 4.6 11.5 6.4 17.7 12.1
Matched CNN-16k 3.9 7.8 6.0 17.5 11.6
VGG-8k 6.3 12.5 7.5 16.2 13.3
VGG-16k 4.8 8.4 6.2 14.3 10.5
LSTM-8k 6.3 11.8 7.3 15.1 12.5
LSTM-16k 4.8 9.3 7.4 16.0 11.7

dent models were improved by using soft labels generated with
VGG and LSTM models. Comparing the standard size stu-
dent CNN with baseline CNN, the word error rate was down
from 13.3% to 11.6% with a single VGG teacher. By applying
LSTM second teacher, additional 3.4% relative improvement
with the switched-training strategy was obtained. We observe
similar improvements with the compact student NN as shown
in Table 2. This model achieves comparable performance to
standard-size baseline CNN model with a RTF reduction of
23%. The proposed switched-training method performs better
than the conventional interpolated-training and effectively dis-
tills knowledge from the strong VGG and LSTM teachers even
with compact networks. In the switched-training scheme one of
two teachers at the minibatch is randomly selected.

3.3. Training with priviledged information

In this section we explore how the proposed training techniques
can be used to train student networks with additional privi-
leged information. To illustrate the efficacy of our approach we
show how an improved narrowband CNN based acoustic model
can be trained by using privileged information from outputs of
broadband models, instead of training the student network on
only narrowband teacher models. Privileged information is pre-
sented to the student network not only via both an ensemble of
teachers but also by data augmentation of training data using
the augmented-training method described earlier. The training
data for this task is created using soft targets from an ensemble
of narrowband teachers, an ensemble of broadband teachers and
also hard targets.

The training data defined in Aurora 4 contains both clean
and various noisy speech. Test results are reported on 4 subsets
commonly referred to as clean (test set A), noisy (test set B),
clean with channel distortion (test set C) and noisy with channel
distortion (test set D). The performance of the baseline CNN
and two teacher networks are tabulated in Table 3.

The “Matched CNN-8k” and “Matched CNN-16k” systems
are both trained with Aurora 4 training data set using hard
labels. The “Matched CNN-8k” narrowband baseline system
is trained on audio data downsampled from 16kHz to 8kHz.
We explore how the performance of the baseline narrowband
model at a WER AVG of 12.1% can be further improved via
knowledge distillation by employing four teachers models to
train various student networks. The broadband teacher mod-
els (VGG-16k and LSTM-16k) were described earlier in Sec-
tion 3.2. The narrowband teacher models (VGG-8k and LSTM-
8k) are trained with 500 hours of Switchboard corpus after 250
hours from the corpus was augmented with JEIDA environmen-
tal noises and RWCP impulse responses used for the broad-
band systems. Since generic teacher models are not trained with
matched training data to Aurora 4, the VGG-8k and LSTM-8k
are worse than baseline CNN-8k.

Various student narrowband models are compared in Table
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Table 4: Performance on student narrowband models.

Teachers Target A B C D AVG
VGG8k soft 6.4 12.4 8.3 17.0 13.6
VGG16k soft 6.0 11.4 7.8 16.3 12.9
VGG8k + VGG16k soft/augment 5.7 11.1 7.2 15.6 12.4
Hard + VGG8k soft/augment 3.9 8.9 5.5 13.6 10.3
Hard + VGG16k soft/augment 4.0 8.6 5.5 13.7 10.2
Hard + VGG8k + VGG16k soft/switching 4.3 8.6 5.6 13.2 10.1
Hard + VGG8k + VGG16k soft/augment 3.8 8.2 5.5 12.9 9.7
Hard + VGG8k + VGG16k + LSTM8k + LSTM16k soft/switching 4.5 8.8 5.9 13.3 10.2
Hard + VGG8k + VGG16k + LSTM8k + LSTM16k soft/augment 3.8 8.3 5.3 12.8 9.7

4. Unlike experiments in the previous section, hard targets are
also used together with soft labels estimated from the VGG and
LSTM teacher models. As seen in the table, using only soft la-
bels is not effective because the VGG-8k and LSTM-8k teachers
perform lower than the baseline. In contrast, combining hard la-
bel with soft labels significantly improves performance. When
broadband teachers are used to train narrowband systems, very
clear additional gains are observed in addition to the combina-
tion of hard and VGG-8k model, leading to a 5.8% error reduc-
tion (10.3% to 9.7%). These results clearly highlight the value
of the proposed training techniques for ensemble of teachers
and the additional information that is being distilled from the
priviledged information made available via broadband soft tar-
gets. It can also be seen that while the switched-training tech-
nique saturates in WER performance when 5 teachers including
hard target is used, augmenting the training data by increasing
the target in each frame using the augmented-training method
provides better improvement over the randomly selected teach-
ers in each frame. To further characterize how the student net-
works are performing we conduct an “oracle” experiment us-
ing hand tuned weights to combine the output scores various
teacher networks during test time. Table 5 shows the system
combination results of various teacher networks. It can be seen
that the student networks trained using the proposed techniques
achieves parity performance with the hand tuned systems.

Table 5: System combination performance of various teacher
networks.

Teachers A B C D AVG
VGG8k+LSTM8k 5.8 10.7 13.6 6.7 11.3
VGG16k+LSTM16k 4.7 8.2 6.2 13.9 10.3
VGG8k+VGG16k +
LSTM8k+LSTM16k 4.8 8.0 5.7 13.0 9.7

The Aurora 4 task is a medium vocabulary task, primar-
ily used to evaluate noise robust algorithms. Having demon-
strated the impact of the proposed teacher-student schemes on
this task, we explore the effectiveness of the same on two well-
know large vocabulary continuous speech recognition (LVCSR)
tasks: Aspire [19] and Broadcast news. The training data avail-
able for both these tasks is significantly higher (greater than 20
orders of magnitude) than the Aurora task. To keep the exper-
iments manageable and to evaluate the generalization of these
techniques on other tasks, we chose to train student models on
the same data as the teacher models (described in Section 3.1).
The same VGG and LSTM models are used as teachers. Ta-
ble 6 presents student CNN models trained using the proposed
strategies. It can be seen that the VGG teacher is significantly
better than the LSTM teacher on both these tasks (Row 2). This
very knowledge is transferred to the student as well (Row 4)

Table 6: Comparing CNN trained with hard targets and student
CNN learned from VGG and LSTM.

Model Target ASpIRE BN-dev04f
CNN hard 41.3 18.4
VGG hard 35.1 14.3
LSTM hard 38.7 16.3
CNN: VGG soft 37.9 15.4
CNN: LSTM soft 40.4 17.1
CNN: VGG+LSTM soft/interpolation 37.1 15.0
CNN: VGG+LSTM soft/switching 37.5 15.1

Table 7: Comparing Compact CNN trained with hard targets
and student CNN learned from VGG and LSTM.

Model Target ASpIRE BN-dev04f
CNN hard 44.2 20.5
CNN: VGG soft 41.7 17.8
CNN: VGG+LSTM soft/switching 41.3 17.7

resulting in WERs of 37.9% and 15.4%, resulting in the VGG-
student beating the performance of the LSTM-teacher. When a
student is trained using the interpolated-training scheme using
the VGG and LSTM as teachers, significant reductions in WER
can be seen on both tasks (Row 6). Similar gains can be seen
when the student model is trained using the switched-training
scheme. The switched-training scheme is comparable to the
interpolated-training scheme for the BN-dev04f test set, while
the interpolated-training scheme is slightly better on the Aspire
test set. Table 7 illustrates the performance of the compact CNN
on these tasks. Compared to the baseline, we still see significant
reductions in WER. Furthermore, the performance of this stu-
dent trained with the proposed switched-training scheme stays
better than a student trained with a VGG teacher only.

4. Conclusions

In this paper we have proposed two new strategies for knowl-
edge distillation using multiple teachers. The proposed schemes
yield gains on both low resource and large resource settings
with the switched-training scheme doing better in low-resource
conditions. We hypothesize that this can be attributed to the
random selection/order of the teachers playing a dominant role
with reduced training data. Our experiments on the Aurora task
show that teachers trained on completely different domains can
still provide significant amounts of knowledge to the student.
We have demonstrated that simpler and compact student models
can achieve comparable recognition accuracy to more complex
teacher models such as the VGG based models.
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