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Abstract
Variational Autoencoders (VAEs) have been shown to provide
efficient neural-network-based approximate Bayesian inference
for observation models for which exact inference is intractable.
Its extension, the so-called Structured VAE (SVAE) allows in-
ference in the presence of both discrete and continuous latent
variables. Inspired by this extension, we developed a VAE with
Hidden Markov Models (HMMs) as latent models. We applied
the resulting HMM-VAE to the task of acoustic unit discov-
ery in a zero resource scenario. Starting from an initial model
based on variational inference in an HMM with Gaussian Mix-
ture Model (GMM) emission probabilities, the accuracy of the
acoustic unit discovery could be significantly improved by the
HMM-VAE. In doing so we were able to demonstrate for an
unsupervised learning task what is well-known in the super-
vised learning case: Neural networks provide superior modeling
power compared to GMMs.
Index Terms: variational autoencoder, hidden Markov Model,
unsupervised learning, acoustic unit discovery

1. Introduction
Automatic Speech Recognition (ASR) performance has im-
proved rapidly in the last years but is still highly dependent on
the availability of large amounts of labeled training data. Not
only is labeled data expensive, it may even be simply not avail-
able for rare languages. Therefore it is desirable to develop
unsupervised learning algorithms which can make use of un-
labeled data.

In a zero resource scenario where methods for speech pro-
cessing are to be learnt from raw speech only, the tasks of acous-
tic and linguistic unit discovery can be discerned. While the
former is concerned with finding phone-like subword units as
acoustic building blocks of the language, the task of the latter is
to discover semantically meaningful linguistic building blocks,
i.e., word- or phrase-like units.

In this contribution we are concerned with Acoustic Unit
Discovery (AUD). In [1] AUD is achieved by starting with a
one-state HMM for all speech sounds, and modifying the suc-
cessive state splitting algorithm [2] to successively learn the
topology and parameters of HMMs to model the subword units.
The authors of [3] carry out iterative re-estimation of the model
parameters and unsupervised decoding to obtain the tentative
label sequence. A sophisticated nonparametric Bayesian ap-
proach has been developed in [4], for which inference was car-
ried out by Gibbs sampling, while inference in the full Bayesian
model of [5] was achieved with the computationally more effi-
cient variational inference.

In all these works GMMs were used as emission probabili-
ties. This stands in contrast to the recent developments in super-
vised ASR, where neural networks have been shown to be su-

perior to GMM-based acoustic modeling. While autoencoders
have been successfully applied to unsupervised representation
learning, see, e.g., [6], we attempt to employ variants of au-
toencoders for acoustic unit discovery.

Recently there has been a lot of research on generative neu-
ral networks. VAEs [7] allow learning of complex distributions
and perform efficient inference by neural networks and have
been successfully applied to unsupervised and semi-supervised
learning of data point distributions [8, 9]. The Structured VAE
(SVAE) proposed in [10] is a generalization of the VAE to more
general graphical models, including those which capture the
correlation structure of time signals. However, to the best of our
knowledge the VAE and its extensions have not been applied to
acoustic unit discovery yet.

Targeting unsupervised speech segmentation and acoustic
model training in this paper, latent classes are introduced into
the VAE model accounting for the acoustic units with temporal
correlations being modeled by a conventional HMM. The re-
sulting model enables the combination of well known HMMs
with sophisticated emission distribution modeling by neural
networks. All graphical model and neural network parameters
are trained jointly by gradient-based optimization to maximize
the likelihood of the generative model. The model structure is
inspired by the work on SVAEs [10]. However, it is consid-
erably simpler, adapted to the use with speech and due to the
suggested training procedures it is more suitable to be applied
with a large number of classes. Since the Viterbi algorithm [11]
provides an efficient segmentation it can also be used for fast
Viterbi training.

The paper is organized as follows. In the next section we
recapitulate the concept of VAEs and then introduce the pro-
posed HMM-VAE. We provide an overview of the inference
and model estimation algorithms. Section 3 describes the AUD
experiments we have conducted on the TIMIT database, while
Section 4 offers some conclusions.

2. Variational Autoencoders

2.1. Generative Modeling

We aim to learn a generative model given a dataset Y = {Yn}
composed of N independent observations Yn. An additional
set of hidden variables H = {Hn} is considered that allows
us to model the data more precisely and/or to incorporate prior
knowledge about the structure of the data that we are interested
in, such as the acoustic units in AUD. The uppercase bold let-
ters used here stand for arrays of vectors, i.e., for complete ut-
terances. The marginal loglikelihood we would like to maxi-
mize with respect to its parameters θ is given by the sum of the
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marginal loglikelihoods of the individual observations:

ln p(Y) =
N∑
n=1

ln p(Yn). (1)

Considering the given latent structure we can rewrite p(Yn) as
[7, 12]:

ln p(Yn) = KL
(
q(Hn)||p(Hn|Yn)

)
+ L (Yn) , (2)

where KL stands for the Kullback-Leibler divergence, and with

L (Yn) = Eq(Hn)

[
ln p(Yn|Hn)

]
+ Eq(Hn)

[
ln
p(Hn)

q(Hn)

]
= Eq(Hn)

[
ln p(Yn|Hn)

]
−KL

(
q(Hn)||p(Hn)

)
.

(3)

Optimization of Eq. (2) can be done by general Expectation-
Maximization (EM) [12] by alternating between:

1. E-step: Inferring q(Hn) to approximate p(Hn|Yn).
2. M-step: Maximizing the lower bound L with respect to

its parameters.

2.2. Variational Autoencoder

First we want to give a brief review of VAEs [7, 13], which con-
stitute the basis of the model proposed in this paper. VAEs com-
bine neural networks with variational inference to allow unsu-
pervised learning of complicated distributions according to the
graphical model shown in Fig. 1. Since single data points are

yn

γ

xn

N

Figure 1: Graphical Model considered with VAEs

considered, bold lowercase letters are used to represent vectors
here. A Dy-dimensional observation yn is modeled in terms of
a Dx-dimensional latent vector xn using a non-linear transfor-
mation f(xn; γ) with parameters γ:

yn = f(xn; γ) + vn, (4)

with vn ∼ N
(
0, σ2

yIDy

)
being Gaussian observation noise

yielding the observation model:

p(yn|xn; γ) = N
(
yn; f(xn; γ), σ

2
yIDy

)
, (5)

where IDy is theDy-dimensional identity matrix. The transfor-
mation f(x; γ) is given by a neural network which is referred
to as probabilistic decoder as it provides the mean of our obser-
vation model. The vector xn can be seen as code of the cor-
responding observation, which is assumed to be drawn from a
standard Normal distribution xn ∼ p(xn) = N (xn;0, IDx).
The choice of this distribution is justified due to the fact that
it can be transformed to an arbitrary distribution given a suffi-
ciently complex transformation f(xn; γ). Note that the noise
variance σ2

y , which is assumed constant here, could also be
modeled dependent on xn as a second output of the decoder
network.

The VAE can be understood as a non-linear version of factor
analysis [12].

2.2.1. E-step: Inference

Aiming at maximizing the marginal loglikelihood in Eq. (2),
however, exact inference of the posterior p(xn|yn) is not
tractable because of the non-linear transformation. The idea of
the VAE is to perform variational inference

q(xn;φ) = N
(
xn;µn, diag(σ

2
n)
)

(6)

by another neural network with parameters φ, which is referred
to as probabilistic encoder as it provides means and variances
of the approximate posterior:(

µn, lnσ
2
n

)
= g(yn;φ). (7)

The encoder and decoder neural networks are trained jointly and
hence inference is basically learned during training.

2.2.2. M-step: Maximization of the Objective Function

The objective function for gradient-based optimization of both
the encoder and the decoder networks is given by the lower
bound

L (yn; γ, φ) =
1

L

L∑
l=1

ln p(yn|x̃(l)
n ; γ)

−KL
(
q(xn;φ)||p(xn)

)
, (8)

which corresponds to Eq. (3) with xn denoting the latent vari-
able Hn and with the first term of the right hand side of Eq.
(3) approximated by sampling. We can backpropagate through
the Gaussian sampling by using the reparameterization trick [7]
x̃
(l)
n = σn � ε

(l)
n + µn with standard Normally distributed

samples ε(l)n . All terms in Eq. (8) can be calculated and differ-
entiated in closed form.

2.3. HMM-VAE

We would like to combine VAEs with HMMs to model speech
utterances leveraging complex emission distributions. Inspired
by the SVAE proposed in [10] we therefore extend the VAE by
latent states and model temporal correlations by HMMs. Each
of the U acoustic units is modeled by three states with the typi-
cal left-to-right topology resulting in K=3U states. The latent
standard Normal distribution of a VAE is replaced by a state
specific Normal distribution:

p(xn,t|zn,t = k; θ) = N
(
xn,t;µk,Σk

)
, (9)

where θ denotes the set of graphical model parameters. The
resulting generative process is illustrated in Fig. 2, where n, t
denote the utterance index and the frame index within an utter-
ance, respectively. In the following we will drop n and con-
sider an individual utterance of length T with its observations
Y = [y1, ...,yT ] and latent variables X = [x1, ...,xT ] and
Z = [z1, ..., zT ] with

ln p(Y|X; γ) =

T∑
t=1

ln p(yt|xt; γ), (10)

ln p(X|Z; θ) =

T∑
t=1

ln p(xt|zt; θ), (11)

ln p(Z; θ) =

T∑
t=1

ln p(zt|zt−1; θ). (12)
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Figure 2: Graphical Model of an HMM-VAE.

The transition probabilities are given by

p(zt = j|zt−1 = k; θ) = akj , (13)

where, in a slight abuse of notation, the term p(z1 = k|z0; θ)
in Eq. (13) has to be understood to denote the initial state
probability p(z1 = k; θ) = πk to simplify notation. In or-
der to ensure that estimated probabilities sum up to one and
that covariance matrices are symmetric we choose the graphi-
cal model parameters to be θ =

{
lnρ, {ln rk,µk,Ck}Kk=1

}
,

with π = softmax(lnρ) and transition probabilities, means
and covariances are given by ak = softmax(ln rk), µk and
Σk = CkC

T
k + σ2

minIDx , respectively, for each state k.
As a VAE can be understood as a non-linear factor analysis,

the proposed model can be considered as a non-linear version
of a factor analysed HMM [14].

2.3.1. E-step: Inference

Using the following mean field approximation:

q(X,Z; θ, φ) = q(Z; θ, φ)

T∏
t=1

q(xt;φ) (14)

with q(xt;φ) being provided by a probabilistic encoder net-
work as before, we can perform mean field inference [12] to
obtain

ln q(Z; θ, φ)

=Eq(X;φ)

[
ln p(X|Z; θ)

]
+ ln p(Z; θ) + const.

=

T∑
t=1

(
b(zt) + ln p(zt|zt−1; θ)

)
+ const. (15)

where const. is a normalizing constant and

b(zt) = Eq(xt;φ)

[
ln p(xt|zt; θ)

]
. (16)

To avoid backpropagation through time during training we
choose q̃(Z) := q(Z; θ(old), φ(old)). Thus the dependency of
q(Z) on the parameters is not taken into account during dif-
ferentiation of the final objective in the M-Step, which is the
common approach in conventional EM. The Viterbi algorithm
[11] provides an efficient way to find the most probable state se-
quence. Note that inference and hence segmentation can be per-
formed without the use of the probabilistic decoder f(xn; γ).

2.3.2. M-step: Maximization of Objective Function

Based on Eq. (3) with latent variables Hn = (Xn,Zn) we
obtain the objective function:

L (Y; γ, θ, φ) =

T∑
t=1

L (yt; γ, θ, φ) (17)

with

L (yt; γ, θ, φ) =
1

L

L∑
l=1

ln p(yt|x̃(l)
t ; γ)

− Eq̃(zt)
[
KL
(
q(xt;φ)||p(xt|zt; θ)

)]
+ Eq̃(zt−1,zt)

[
ln p(zt|zt−1; θ)

]
+ const. (18)

where const. gathers all terms that are irrelevant for the opti-
mization. The marginals q̃(zt) and q̃(zt−1, zt) can be computed
recursively using the Forward-Backward (FB) algorithm. How-
ever, as calculation of the expectation in the second term might
be computationally expensive when marginalizing over a large
number of states, it is reasonable to either perform Viterbi train-
ing or to approximate the expectation by sampling:

Eq̃(zt)
[
KL
(
q(xt;φ)||p(xt|zt; θ)

)]
≈ 1

J

J∑
j=1

KL
(
q(xt;φ)||p(xt|z(j)t ; θ)

)
(19)

with z(j)t ∼ q̃(zt).
Note that an objective L (yt, zt; γ, θ, φ) for a supervised

scenario, where the state sequence is given, can be easily ob-
tained from Eq. (18) by removing the expectations of the two
latter terms. This is another attractive feature of the proposed
HMM-VAE: It can be used for both supervised and unsuper-
vised training, as well as for semi-supervised training, where
some utterances come with labels while others do not.

The negative of the objective in Eq. (18) provides a loss
function consisting of three loss terms. Notice that the first term
becomes a sum over negative loglikelihoods which is basically
a Mean Squared Error (MSE) between the output of the proba-
bilistic decoder f(x(l)

t ; γ) and the actual observation yt:

− ln p(yt|x̃(l)
t ; γ) =

||f(x(l)
t ; γ)− yt||2

2σ2
y

+ const. (20)

Hence it represents a reconstruction loss that can be scaled by
the hyperparameter σ2

y . The two latter terms of the loss function
can be seen as regularization encouraging the model to learn a
latent representation according to the incorporated model struc-
ture.

The overall loss function given as a sum over all utterances
n can be minimized using minibatch training and gradient de-
scent with respect to all parameters.

3. Experiments
For evaluation the proposed model is used for unsupervised
learning of acoustic units on the TIMIT database [15]. Training
and testing is performed on the complete datasets including the
dialect sentences (SA), where 100 randomly chosen training ut-
terances are used for cross validation. Mel Frequency Cepstral
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Table 1: Performance of different training types. The first col-
umn states the type of the initial segmentation used for pre-
training (see text). The terms in parentheses state the results
without training of the HMM parameters. The first row is the
performance of the GMM-HMM system.

Init. Train.-Alg. NMI eq. PER

1 - 37.8% 65.4%
1 Viterbi 42.2% 58.3%
1 FB 42.3% 60.5%

2(a) Viterbi 42.8% (42.8%) 58.9% (59.7%)
2(a) FB 42.6% 59.0%
2(b) Viterbi 41.9% 59.7%
2(b) FB 42.5% 58.8%

Coefficents (MFCCs) are used as features with delta and delta-
deltas where mean and variance were normalized to zero and
one, respectively, for each feature and utterance. Each acoustic
unit is modeled by an HMM with three states in a left-to-right
topology. All transition probabilities within and between acous-
tic units are trained jointly.

Similar as in the hybrid approach of supervised ASR train-
ing, our HMM-VAE is initialized using the segmentation of a
GMM-HMM system: First, variational Bayesian inference in
a GMM-HMM model for AUD is carried out according to [5].
Then, to initialize our model we perform a pre-training, where
the result of the GMM-HMM system is considered as the ten-
tative supervised segmentation. To be specific, we compared
three types of initializations:

1. Using the exact phone-level segmentation provided by
the GMM-HMM system and deriving a state-level align-
ment by assuming equal duration of all states within a
segment.

2. Using only the state-level label sequence, for each utter-
ance, found by the GMM-HMM system and discarding
the segment boundary information and either

(a) deriving a state-level alignment by assuming equal
duration of all states within an utterance or

(b) using the given state-level label sequence as con-
straint in the Viterbi/FB algorithm.

Finally, the subsequent training is performed completely unsu-
pervised. Note that the number U of acoustic units to be learned
is given by the GMM-HMM system, which employs a Dirich-
let process prior on the HMM inventory. Here U=72 acoustic
units were discovered by the GMM-HMM. This number is not
changed during the HMM-VAE training unless an HMM does
not take responsibility for any of the observations, which would
result in removal of that model.

The encoder and decoder networks consist of 2×256 hid-
den units each. Adam [16] is used for optimization with
α=10−3. In all experiments L=1 sample is used to approxi-
mate the expected reconstruction loss. When not using Viterbi
training, the second term of our objective is approximated by
J=3 samples according to Eq. (19). Both, pre- and unsu-
pervised training are terminated after three epochs without im-
provement of the cross validation loss according to Eq. (18).

The performance of the HMM-VAE is evaluated in terms
of the Normalized Mutual Information (NMI) [17] and an
equivalent Phone Error Rate (PER) between the learned seg-
mentation and the true phone labeling. The NMI, defined as
NMI = I(Z(true);Z(pred))

H(Z(true))
= H(Z(true))−H(Z(true)|Z(pred))

H(Z(true))
with H(·)

representing an entropy, can be understood as a measure of

16 32 48 64 80 96

38

40

42

Dx

N
M

I/
%

full cov., σ2
y = 0.1

full cov., σ2
y = 0.01

diag cov., σ2
y = 0.1

GMM-HMM

Figure 3: NMI performance for different code dimensions Dx,
types of covariance matrices and observation variances σ2

y .

statistic dependence between the predicted and the true label
sequence with a high NMI being desirable. For the calcula-
tion of an equivalent PER the true phone labels were mapped
from 61 to 39 classes as proposed by [18] and each acoustic
unit was, similar to the calculation of the many-to-one Word
Error Rate (WER) in [19], mapped to the ground truth phone
with which it overlaps the most. The PER is then given by
PER = Sub.+Del.+Ins.

Tot. with Sub. + Del. + Ins. being the min-
imal number of substitutions, deletions, and insertions between
the predicted and true phone sequence and Tot. the total num-
ber of phones in the true phone sequence with a low PER being
desirable.

Tab. 1 compares the different types of initialization and
training algorithms using a latent code of dimension Dx=64,
full covariance matrices and an observation variance of σ2

y=0.1.
We can see that in all cases the performance of the GMM-HMM
based AUD training is significantly improved. However, the
type of initialization and the used training algorithm only have
a slight impact on the results. Note, however, that Viterbi train-
ing significantly reduces training time.

Fig. 3 shows the NMI for different code dimensions, types
of covariance matrices and observation variances when using an
initialization according to 2(a) and Viterbi training.

4. Conclusions
Inspired by the concept of structured VAEs [10] we have ex-
tended the VAE to capture temporal correlations in a speech sig-
nal by incorporating the structure of an HMM. An iterative EM-
like algorithm for optimization of the objective function and in-
ference of the latent variables has been derived. The concept
was applied to an unsupervised acoustic unit discovery task, re-
sulting in a significantly improved accuracy of the discovered
acoustic units, compared to a variational Bayesian GMM-HMM
algorithm, whose result was used as initialization for the pro-
posed HMM-VAE. It is important to note that the concept is
rather general and applicable to structures other than HMMs,
although HMMs are the most prominent graphical model struc-
ture used in speech.
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