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Abstract
In this paper, we propose a model integration method for hid-
den Markov model (HMM) and deep neural network (DNN)
based acoustic models using a product-of-experts (PoE) frame-
work in statistical parametric speech synthesis. In speech pa-
rameter generation, DNN predicts a mean vector of the prob-
ability density function of speech parameters frame by frame
while keeping its covariance matrix constant over all frames.
On the other hand, HMM predicts the covariance matrix as well
as the mean vector but they are fixed within the same HMM
state, i.e., they can actually vary state by state. To make it pos-
sible to predict a better probability density function by lever-
aging advantages of individual models, the proposed method
integrates DNN and HMM as PoE, generating a new proba-
bility density function satisfying conditions of both DNN and
HMM. Furthermore, we propose a joint optimization method
of DNN and HMM within the PoE framework by effectively
using additional latent variables. We conducted objective and
subjective evaluations, demonstrating that the proposed method
significantly outperforms the DNN-based speech synthesis as
well as the HMM-based speech synthesis.
Index Terms: speech synthesis, deep neural network, hidden
Markov model, model integration, product-of-experts

1. Introduction
Statistical parametric speech synthesis (SPSS) is a framework
that generates synthetic speech based on statistical models.
Heretofore, hidden Markov model- (HMM) based speech syn-
thesis [1, 2, 3] has been actively studied for a long time in the
SPSS. HMM-based speech synthesis is highly flexible with re-
spect to voice variation and speaking style [4, 5], and it is com-
paratively easy to rectify problematic sounds. However, degra-
dation in speech quality is caused by the state-by-state modeling
and decision-tree based hard clustering [6]. The improvement
of its speech quality is therefore a very important task.

Recently, deep neural network- (DNN) based speech syn-
thesis [7, 8, 9] has attracted much attention. DNN-based speech
synthesis generates high quality speech trajectory frame by
frame, and has achieved significant improvements over HMM-
based one [7, 8, 9]. However, there are mainly three problems
in the DNN-based systems. Firstly, the controllability of voice
variation and speaking style is still limited. Secondly, modifi-
cation of generated speech parameter by the DNN-based sys-
tems is more difficult than that of the HMM-based systems be-
cause modifying network weights is harder than the decision
trees [10]. Finally, experience with respect to the DNN-based
systems is less than that of the HMM-based systems.

In contrast, methods integrating DNN and HMMs have

been proposed to leverage advantages of both HMMs and DNN.
For example, Chen et. al. have used decision tree question indi-
cators as an input to DNN [11], and Hashimoto et. al. have used
speech parameters generated by HMMs as an input to DNN
[12]. In [11, 12], methods integrating HMM and DNN out-
performed the DNN-based systems in the speech quality. These
methods integrate DNN and HMMs in the training phase.

This paper proposes a new model integration method for
both HMMs and DNN using a product-of-experts (PoE) frame-
work [13] in the speech parameter generation phase to utilize
advantages of them.1 HMMs and DNN are trained individually,
and probability density functions (p.d.f.s) output from them are
multiplied. While conventional methods integrate HMMs and
DNN serially, the proposed method integrates HMMs and DNN
in parallel. Using the PoE framework enables p.d.f. to be so
generated as to simultaneously satisfy constraints of individual
models. Furthermore, we propose a method which jointly op-
timizes the individual models within the PoE framework using
Expectation-Maximization (EM) algorithm.

This paper is organized as follows. Section 2 describes the
SPSS framework and the details of the HMM- and the DNN-
based speech synthesis. Section 3 describes our methods to
integrate HMMs and DNN. The experimental conditions and
results are presented in Section 4. Finally, Section 5 concludes
the paper and discusses future works.

2. HMM and DNN speech synthesis

2.1. SPSS framework

SPSS trains the relationship between input text and waveforms
using statistics. Since directly modeling the relationship is not
easy, the input text is converted to contextual feature sequences
and the waveforms are converted to acoustic feature sequences.
Acoustic features comprise static and dynamic features. With
the input contextual features, a statistical model that outputs
acoustic features can be trained. Once trained, the model can
generate acoustic feature sequences from the contextual fea-
tures corresponding to a given arbitrary text. In doing so, it can
estimate the probability distribution of the acoustic feature se-
quences. Acoustic sequences transitions are usually generated
by utilizing the explicit relations between static and dynamic
features [15]. Finally, synthetic speech is generated by inputting
the estimated acoustic sequences into a vocoder.

1Model integration using the PoE framework in the HMM-based
speech synthesis has been proposed [14].
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2.2. HMM speech synthesis

The HMM-based speech synthesis uses context-dependent
phoneme HMMs to model the probability distribution of speech
parameter sequences. The context-dependent state output p.d.f.s
are predicted from given contextual features using decision
trees.

Let ot represent a speech parameter vector consisting of
not only static features but also dynamic features at frame
t and qt be an HMM state sequence assigned to the frame
t. The p.d.f. of a speech parameter vector sequence o =
[o⊤

1 , · · · ,o⊤
t , · · · ,o⊤

T ]
⊤ is modeled as follows:

P (o|λ(H)) =
∑
all q

P (q|λ(H))

T∏
t=1

N (ot;µ
(H)
qt ,U (H)

qt ), (1)

where q = {q1, · · · , qt, · · · , qT }, λ(H) is an HMM parameter
set, and N (·;µ(H)

qt ,U
(H)
qt ) denotes a Gaussian distribution with

a mean vector µ(H)
qt and a covariance matrix U

(H)
qt .

In speech parameter generation, a sentence HMM is devel-
oped by concatenating the context-dependent phoneme HMMs
corresponding to an input text, and then an HMM-state se-
quence is determined by maximizing the likelihood of the ex-
plicit duration model. Finally, a naturally varying speech pa-
rameter sequence is generated from the resulting p.d.f. se-
quence that varies state by state under some constraints, such
as an explicit relationship between the static and dynamic fea-
tures [15], and the global variance (GV) [16] or the modulation
spectrum [17] of the speech parameter sequence.

2.3. DNN speech synthesis

In the DNN-based speech synthesis, the contextual features and
speech parameter vectors are treated as the inputs and targets
of a DNN, respectively. The contextual features are defined
frame by frame by additionally including frame positions within
a phoneme.

The DNN is trained to minimize the squared error between
the targets and predicted speech parameter vectors, which are
usually normalized as Z-scores (i.e., zero means and unit vari-
ances). This is equal to modeling the p.d.f. of an original speech
parameter vector before the normalization using a Gaussian dis-
tribution as follows:

P (o|λ(D)) =

T∏
t=1

N (ot;µ
(D)
t ,U (D)), (2)

where λ(D) is a parameter set of the DNN, U (D) is a global
covariance matrix to be used for the normalization, and µ

(D)
t

is an unnormalized mean vector given by the speech parameter
vector predicted by the DNN

In speech parameter generation, the mean vector is pre-
dicted frame by frame from the frame-wise contextual features
by the DNN. The resulting p.d.f. sequence has a time-varying
mean vector sequence and the constant covariance matrices over
a sequence. A speech parameter sequence is generated in the
same manner as in the HMM-based speech synthesis.

3. Model integration
In this section, we investigate a framework that integrates the es-
timated probability distributions in model space using individ-
ually trained models. An overview of this framework is shown
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Figure 1: PoE-based model integration (a) without joint opti-
mization and (b) with joint optimization process.

in Fig. 1. HMMs and DNN are individually trained from acous-
tic and contextual features. Next, the trained HMMs and DNN
using a PoE framework are integrated. Finally, by inputting
contextual features to the integrated model, speech parameters
are generated. In this study, we investigate whether the model
integration using the PoE framework improves the final results.

3.1. PoE-based model integration

We propose an integration method of multiple models within
the PoE framework. The process of this method is shown in
Fig. 1 (a). The PoE integrates multiple p.d.f.s into a single p.d.f.
by taking a product of them. This product operation produces
a shaper p.d.f. than the individual ones, making the integrated
p.d.f. focus on a region overlapped over all p.d.f.s.

In this paper, we integrate the p.d.f. predicted by the DNN
and that by the HMMs frame by frame. At frame t, the PoE-
based p.d.f. is derived by

N (ot;µ
(I)
t ,U (I)

qt ) =

1

Zqt

N (ot;µ
(D)
t ,U (D)) · N (ot;µ

(H)
qt ,U (H)

qt ), (3)

Zqt =

∫
N (ot;µ

(D)
t ,U (D)) · N (ot;µ

(H)
qt ,U (H)

qt )dot, (4)

where

µ
(I)
t = U (I)

qt

(
U (D)−1

µ
(D)
t +U (H)

qt

−1
µ(H)

qt

)
, (5)

U (I)
qt =

(
U (D)−1

+U (H)
qt

−1
)−1

. (6)

The mean vector of the PoE-based p.d.f. varies frame by frame
as in the DNN and its covariance varies state by state as in the
HMMs. We may also use integration weights to additionally
control the effects of individual models on the integrated model
as follows:

µ
(I,w)
t = U (I,w)

qt

(
w(D)U (D)−1

µ
(D)
t + w(H)U (H)

qt

−1
µ(H)

qt

)
, (7)

U (I,w)
qt =

(
w(D)U (D)−1

+ w(H)U (H)
qt

−1
)−1

. (8)
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Although only the HMMs and the DNN are integrated in this
paper, multiple models are straightforwardly integrated within
this framework.

3.2. Joint optimization using EM algorithm

To make it possible to jointly optimize the DNN parameter set
and the HMMs parameter set by maximizing a likelihood func-
tion based on PoE, which is given by

P (o|q,λ(I)) =

T∏
t=1

N (ot;µ
(I)
t ,U (I)

qt ), (9)

where λ(I) consists of both the DNN and HMM parameter sets,
we propose a training method based on EM algorithm. The
PoE-based likelihood function is reformulated by additionally
using latent variables to model the observed speech parameter
vector ot as follows:

ot = U (I)
qt

[
U (D)−1

,U (H)
qt

−1
] [

o
(D)
t

⊤
,o

(H)
t

⊤]⊤
, (10)

where o
(D)
t and o

(H)
t are the latent variables following the

DNN-based p.d.f. and the HMM-based p.d.f., respectively, as
follows:

o
(D)
t ∼ N (µ

(D)
t ,U (D)), (11)

o
(H)
t ∼ N (µ(H)

qt ,U (H)
qt ). (12)

The PoE-based p.d.f. N (ot;µ
(I)
t ,U

(I)
qt ) can be derived by

marginalizing a p.d.f. of the complete data, which is given by ot

o
(D)
t

o
(H)
t

 ∼ N


µ

(I)
t

µ
(D)
t

µ
(H)
qt

,
U

(I)
qt U

(I)
qt U

(I)
qt

U
(I)
qt U (D) 0

U
(I)
qt 0 U

(H)
qt


 , (13)

over the latent variables o(D)
t and o

(H)
t . To determine the model

parameter set λ(I) that maximizes the PoE-based likelihood
function, the following auxiliary function is maximized with re-
spect to the model parameter set:

Q(λ(I), λ̂(I)) =

T∑
t=1

(∫
P (o

(D)
t |ot, qt,λ

(I)) logN (o
(D)
t ; µ̂

(D)
t , Û (D))do(D)

t

+

∫
P (o

(H)
t |ot, qt,λ

(I)) logN (o
(H)
t ; µ̂(H)

qt , Û (H)
qt )do(H)

t

)
,

(14)

where the posterior p.d.f.s calculated in E-step are given by

P (o
(D)
t |ot, qt,λ

(I)) =

∫
P (o

(D)
t ,o

(H)
t |ot, qt,λ

(I))do(H)
t

= N (o
(D)
t ;ot + µ

(D)
t − µ

(I)
t ,U (D) −U (I)

qt ), (15)

P (o
(H)
t |ot, qt,λ

(I)) =

∫
P (o

(D)
t ,o

(H)
t |ot, qt,λ

(I))do(D)
t

= N (o
(H)
t ;ot + µ(H)

qt − µ
(I)
t ,U (H)

qt −U (I)
qt ). (16)

In M-step, the HMM parameter set and the DNN parameter set
are separately updated by maximizing the auxiliary function in
the usual manner.

Fig. 1 (b) shows the proposed joint optimization process.
The DNN parameter set and the HMM parameter set are opti-
mized as follows:

Step 1 Separately train initial HMM and DNN using the
speech parameter vectors and the contextual features.

Step 2 Develop the PoE model using the trained HMM and
DNN.

Step 3 Jointly estimate the posterior p.d.f.s of the latent vari-
ables for the HMM and the DNN.

Step 4 Update the HMM and DNN parameters separately us-
ing the corresponding posterior p.d.f.s as the observation
vectors for individual models.

Step 5 Return to Step 2 unless an increase of the PoE-based
likelihood converges.

In this paper, we approximate the posterior p.d.f.s with the max-
imum to a posteriori estimates, i.e., their mean vectors.

It is also possible to handle an HMM state sequence as a
hidden variable. Moreover, we can easily extend the frame-
wise integration process used in this paper to a sequence-wise
integration process by further introducing the latent trajectory
modeling technique [18].

4. Experimental evaluation
4.1. Experimental conditions

We conducted experiments to confirm the performance of the
proposed method. A Japanese corpus recorded using a female
speaker was used for the experiments. The training set con-
sisted of phonetically balanced 503 sentences. Another 100 and
93 sentences were used as validation and test data, respectively.
The speech data was downsampled from 48 kHz to 16 kHz.
The spectrum and aperiodicity (AP), analyzed by STRAIGHT
[19] every 5 ms, were represented by 40 Mel-cepstral coeffi-
cients (from the 0th to the 39th). Logarithmic fundamental fre-
quency (log F0) values were calculated by integrating the re-
sults of multiple F0 extractors [20, 21, 22], and micro-prosody
was removed to smooth the results. In addition, when training
the DNN model, we used the log F0 pattern which was inter-
polated during unvoiced and silent periods. Acoustic features
were composed of the Mel-cepstral coefficients, AP and log F0

and their delta and delta-delta features. Five-state, left-to-right,
no-skip hidden semi-Markov models (HSMMs) were used. The
sizes of decision trees in the HMM-based system was controlled
by the scaling factor α for the model complexity penalty term of
the minimum description length (MDL) criterion [23] (α = 1).

In the HMM-based system, the above acoustic features and
phoneme duration were trained using HSMMs and contextual
features in the phonemes. In the DNN-based system, frame-by-
frame contextual features were used that includes frame posi-
tions calculated from the same phoneme duration used in the
HMM-based system. The output vector consisted of the above
acoustic features and a voiced/unvoiced (V/UV) binary value.
The total numbers of input and output vectors in the DNN train-
ing were 483 and 244, respectively. Both the input and output
vectors were so normalized as to have zero means and unit vari-
ances. The structure of the DNN had six layers of 1024 units,
and the weights of the DNN were initialized by random values.
The mini-batch size was 18, the number of epochs was 30, the
learning rate was 1.0× 10−5, and activation function was tanh.
Estimated output vector in the DNN was unnormalized using
global means and variances that were calculated from training
data, and the probability distribution was generated so that the
unnormalized output vector was mean vector and variance was
the global variance.
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Table 1: Results of objective evaluation.
MCD (dB) AP distortion (dB) V/UV error rate (%) RMSE in log F0 (oct)

HMM 5.83 4.24 7.72 0.39
DNN 5.64 4.10 4.59 0.45

PoE w/o opt. 5.53 4.10 4.47 0.41
PoE w opt. 5.45 4.09 4.53 0.39

In PoE-based model integration, integration weights are set
to w(D) = 0.9 and w(H) = 0.1 based on the likelihood of
the Gaussian distribution of the PoE-based model from prelim-
inary experiments. In the joint optimization process, models
trained using the above HMM- and DNN-based systems were
used as the initial models. In the parameter update process of
the integrated model, in the case of DNN, the learning rate was
1.0 × 10−7, the other conditions were the same as those of
DNN-base system and, in the case of the HMM, all conditions
were the same as those of the HMM-based system; the state
sequences of HMMs were fixed. For approximation, only the
mean vectors of both the HMMs and DNN were updated. The
number of iteration in the joint optimization was two.

4.2. Objective evaluation

To objectively evaluate the performance of all the methods,
Mel-cepstral distortion (MCD) (dB), AP distortion (dB), V/UV
error rate (%), and root mean squared error (RMSE) in log F0

(oct) were used. Tab. 1 shows the results of the objective evalua-
tion. PoE w/o opt. and PoE w opt. mean the model integration
in Sec. 3.1 and Sec. 3.2 respectively.

First, we compared with the HMM- and the DNN-based
systems. The DNN-based system outperformed the HMM-
based ones in all measurements except for RMSE in log F0.
PoE w/o opt. achieved same or higher performances than the
HMM- and the DNN-based systems except for RMSE in log
F0. PoE w opt. outperformed PoE w/o opt. in all the mea-
surements except for RMSE in log F0. Therefore PoE w opt.
comprehensively outperformed the others.

4.3. Subjective evaluation

We compared the performances of all the methods by carry-
ing out a subjective preference listening test. The subjectives
were 5 males. The number of test sentences was 12. In the
HMM-based system, the parameter generation considering GV
[16] is used to enhance the dynamics within each speech utter-
ance. We applied a postfilter for Mel-cepstral coefficients [24]
(PF1) to the speech parameters generated from the DNN-based
system and the proposed method. However, in preliminary ex-
periments, we found that the dynamic range of speech gener-
ated from the proposed method tends to be narrower than the
HMM-based system with GV and the DNN-based system with
the PF1. To enhance the dynamic range of synthesized speech,
we applied another postfilter (PF2) for Mel-cepstral coefficients
generated by the proposed method. The PF2 was designed to
recover the variance in each utterance to the global variance.
The PF2 was not applied to DNN-based system. Because the
effect of the PF2 was almost not confirmed due to using the
global variance as the variance of each frame in the parameter
generation phase. As a result, the PF1 was applied to DNN-
based system in this subjective evaluation. Furthermore, we
found another problem about the proposed method, that abnor-
mal sounds were observed in the proposed method when results
of V/UV in the HMM- and the DNN-based systems were dif-
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Figure 2: Preference score between chosen two systems.

ferent. To avoid such sounds, when the results of V/UV in the
HMM- and the DNN-based systems were same, we integrated
HMMs and DNN using the PoE in the proposed method. On the
other hand, when the results were different we used the speech
parameter generated from the DNN-based system in the pro-
posed method.

Subjectives evaluated the naturalness of synthesized speech
with the same the test set. After listening to each pair of sam-
ples, the subjects were asked to choose their preferred one,
whereas they were able to choose “neutral” if they did not have
any preference. Fig. 2 shows the results of the subjective eval-
uation. We confirmed that significantly better preferences at
p > 0.01 were observed in each of set1, 2 and 3. As for set1,
the DNN-based system outperformed the HMM-based one. We
can also find that the proposed method outperformed the DNN-
based system in set2 and 3. The differences of significant pref-
erence between the proposed methods could not be found in
set4.

4.4. Analysis

The postfilter considering the global variance worked well in the
proposed method. The proposed method strongly weights the
DNN-based system in this experimental condition. The mean
vectors of the proposed method varied frame by frame as in the
DNN and its covariance matrix slightly varied state by state as
in the HMMs. This suggests that the variation of the covariance
matrix results in speech quality improvement.

5. Conclusion
In this paper, we investigated model integration in statistical
parametric speech synthesis. The HMM- and the DNN-based
systems were integrated based on a PoE framework, which are
the two main systems in SPSS. Moreover, this paper provided
joint optimization within the PoE. The integrated model based
on the PoE achieved significant improvements over the HMM-
and the DNN-based systems in both objective and subjective
evaluation. In the proposed method, joint optimization com-
prehensively achieved performance improvement in objective
evaluation; however, preference was not shown in subjective
evaluation.

In future work, we plan to compare the proposed method
with other model integration methods such as Dropout [25].
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