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Abstract

In this paper we consider the problem of speech enhancement
in real-world like conditions where multiple noises can simulta-
neously corrupt speech. Most of the current literature on speech
enhancement focus primarily on presence of single noise in
corrupted speech which is far from real-world environments.
Specifically, we deal with improving speech quality in office en-
vironment where multiple stationary as well as non-stationary
noises can be simultaneously present in speech. We propose
several strategies based on Deep Neural Networks (DNN) for
speech enhancement in these scenarios. We also investigate a
DNN training strategy based on psychoacoustic models from
speech coding for enhancement of noisy speech.

Index Terms: Deep Neural Network, Speech Enhancement,
Multiple Noise Types, Psychoacoustic Models

1. Introduction

Speech Enhancement (SE) is an important research problem in
audio signal processing. The goal is to improve the quality and
intelligibility of speech signals corrupted by noise. Due to its
application in several areas such as automatic speech recogni-
tion, mobile communication, hearing aids etc. it has been an
actively researched topic and several methods have been pro-
posed over the past several decades [1] [2].

The simplest method to remove additive noise by subtract-
ing an estimate of noise spectrum from noisy speech spectrum
was proposed back in 1979 by Boll [3]. The wiener filtering [4]
based approach was proposed in the same year. MMSE esti-
mator [5] which performs non-linear estimation of short time
spectral amplitude (STSA) of speech signal is another impor-
tant work. A superior version of MMSE estimation referred to
as Log-MMSE tries to minimize the mean square-error in the
log-spectral domain [6]. Other popular classical methods in-
clude signal-subspace based methods [7] [8].

In recent years deep neural network (DNN) based learning
architectures have been found to be very successful in related
areas such as speech recognition [9-12]. The success of deep
neural networks (DNNs) in automatic speech recognition led
to investigation of deep neural networks for noise suppression
for ASR [13] and speech enhancement [14] [15] [16] as well.
The central theme in using DNNs for speech enhancement is
that corruption of speech by noise is a complex process and a
complex non-linear model like DNN is well suited for modeling
it [17] [18].

Although, there are very few exhaustive works on utility of
DNN:ss for speech enhancement, it has shown promising results
and can outperform classical SE methods. A common aspect
in several of these works [14] [18] [16] [19] [15] is evaluation
on matching or seen noise conditions. Matching or seen con-
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ditions implies the test noise types (e.g crowd noise) are same
as training. Unlike classical methods which are motivated by
signal processing aspects, DNN based methods are data driven
approaches and matched noise conditions might not be ideal for
evaluating DNNs for speech enhancement. In fact in several
cases, the “noise data set” used to create the noisy test utter-
ances is same as the one used in training. This results in high
similarity (same) between the training and test noises where it
is not hard to expect that DNN would outperform other meth-
ods. Thus, a more thorough analysis even in matched conditions
needs to be done by using variations of the selected noise types
which have not been used during training.

Unseen or mismatched noise conditions refer to the situa-
tions when the model (e.g DNN) has not seen the test noise types
during training. For unseen noise conditions and enhancement
using DNNSs, [17] is a notable work. [17] trains the network
on a large variety of noise types and show that significant im-
provements can be achieved in mismatched noise conditions by
exposing the network to large number of noise types. In [17]
“noise data set” used to create the noisy test utterances is dis-
joint from that used during training although some of the test
noise types such as Car, Exhibition would be similar to a few
training noise types such as Traffic and Car Noise, Crowd Noise.
Some post-processing strategies were also used in this work
to obtain further improvements. Although, unseen noise con-
ditions present a relatively difficult scenario compared to the
seen one, it is still far from real-world applications of speech
enhancement. In real-world we expect the model to not only
perform equally well on large variety of noise types (seen or
unseen) but also on non-stationary noises. More importantly,
speech signals are usually corrupted by multiple noises of dif-
ferent types in real world situations and hence removal of sin-
gle noise signals as done in all of the previous works is restric-
tive. In environments around us, multiple noises occur simulta-
neously with speech. This multiple noise types conditions are
clearly much harder and complex to remove or suppress. To
analyze and study speech enhancement in these complex situa-
tions we propose to move to an environment specific paradigm.
In this paper we focus on office-environment noises and pro-
pose different methods based on DNNs for speech enhance-
ment in office-environment. We collect large number of office-
environment noises and in any given utterance several of these
noises can be simultaneously present along with speech (details
of dataset in later sections). We also show that noise-aware
training [20] proposed for noise robust speech recognition are
helpful in speech enhancement as well in these complex noise
conditions. We specifically propose to use running noise esti-
mate cues, instead of stationary noise cues used in [20]. We
also propose and evaluate strategies combining DNN and psy-
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choacoustic models for speech enhancement. The main idea in
this case is to change the error term in DNN training to address
frequency bins which might be more important for speech en-
hancement. The criterion for deciding importance of frequency
are derived from psychoacoustic principles.

Section 2 describes the basic problem and different strate-
gies for training DNNs for speech enhancement in multiple
noise conditions, Section 3 first gives a description of datasets,
experiments and results. We conclude in Section 4.

2. DNN based Speech Enhancement

Our goal is speech enhancement in conditions where multiple-
noises of possibly different types might be simultaneously cor-
rupting the speech signal. Both stationary and non-stationary
noises of completely different acoustic characteristics can be
present. This multiple-mixed noise conditions are close to real
world environments. Speech corruption under these conditions
are much more complex process compared to that by single
noise and hence enhancement becomes a harder task. DNNs
with their high non-linear modeling capabilities is presented
here for speech enhancement in these complex situations.

Before going into actual DNN description, the target do-
main for neural network processing needs to be specified first.
Mel-frequency spectrum [14] [16], ideal binary mask, ideal ra-
tio mask, short-time Fourier transform magnitude and its mask
[21] [22], log-power spectra are all potential candidates. In [17],
it was shown that log-power spectra works better than other tar-
gets and we work in log-power spectra domain as well. Thus,
our training data consists of pairs of log-power spectra of noisy
and the corresponding clean utterance. We will simply refer to
the log-power spectra as feature for brevity at several places.

Our DNN architecture is a multilayer feed-forward net-
work. The input to the network are the noisy feature frames and
the desired output is the corresponding clean feature frames.
Let N(¢, f) = log(|STFT(n")|?) be the log-power spectra
of a noisy utterance n* where ST F'T is the short-time Fourier
transform. ¢ and f represent time and frequency respectively
and f goes from 0 to N where N = (DFT size)/2 — 1. Let
n; be the t** frame of N (¢, f) and the context-expanded frame
at ¢ be represented as y;, where y; is given by

Yt = [nt—n ey M1, Mg, Mgy 1, --.-nz+7} (1
Let S(t, f) be the log-power spectra of clean utterance corre-
sponding to n*. The " clean feature frame from S(t, f) cor-
responds to n; and is denoted as s;. We train our network with
multi-condition speech [20] meaning the input to the network is
y+ and the corresponding desired output is s;. The network is
trained using back-propagation algorithm with mean-square er-
ror (MSE) (Eq. 2) as error-criterion. Stochastic gradient descent
over a minibatch is used to update the network parameters.

@

k=1
In Eq. 2, K is the size of minibatch and §; = f(O,y:) is the
output of the network. f(©) represents the highly non-linear
mapping performed by the network. © collectively represents
the weights (W) and bias (b) parameters of all layers in the net-
work. The term \|[|W|3 is regularization term to avoid overfit-
ting during training. A common thread in almost all of the cur-
rent works on neural network based speech enhancement such
as [14] [16] [18] [17], is the use of either RBM or autoencoder
based pretraining for learning network. However, given suf-
ficiently large and varied dataset the pretraining stage can be
eliminated and in this paper we use random initialization to ini-
tialize our networks.

K
1 .
MSE = ?Zﬂst — 5|7+ AW 3
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Once the network has been trained it can be used to obtain
an estimate of clean log-power spectra for a given noisy test
utterance. The STFT is then obtained from the log-power spec-
tra. The STFT along with phase from noisy utterance is used to
reconstruct the time domain signal using the method described
in [23].

2.1. Feature Expansion at Input

We expand the feature at input by two methods both of which
are based on the fact that feeding information about noise
present in the utterance to the DNN is beneficial for speech
recognition [20]. [20] called it noise-aware training of DNN.
The idea is that the non-linear relationship between noisy-
speech log-spectra, clean-speech log-spectra and the noise log-
spectra can be modeled by the non-linear layers of DNN by di-
rectly giving the noise log-spectra as input to the network. This
is simply done by augmenting the input to the network y; with
an estimate of the noise (&;) in the frame n,. Thus the new input
to the network becomes

y/t = [nt_77"7nt—17niznt+17"ni+77éi] (3)
The same idea can be extended to speech enhancement as well.
[20] used stationary noise assumption and in this case the &
for the whole utterance is fixed and obtained using the first few
frames (F’) of noisy log-spectra

1 &

e — e = f ; n:
However, under our conditions where multiple noises each of
which can be non-stationary, a running estimate of noise in each
frame might be more beneficial. We use the algorithm described
in [24] to estimate &; in each frame and use it in Eq 3 for input
feature expansion. We expect the running estimate to perform

better compared to Eq. 4 in situations where noise is dominant
(low SNR) and noise is highly non-stationary.

2.2. Psychoacoustic Models based DNN training

The sum of squared error for a frame (SE, Eq 5) used in Eq.
2 gives equal importance to the error at all frequency bins.
This means that all frequency bins contribute with equal impor-
tance in gradient based parameter updates of network. However,
for intelligibility and quality of speech it is well known from
pyschoacoustics and audio coding [25-30] that all frequencies
are not equally important. Hence, the DNN should focus more
on frequencies which are more important. This implies that the
same error for different frequencies should contribute in accor-
dance of their importance to the network parameter updates. We
achieve this by using weighted squared error (WSE) as defined
inEq 6

“

N
SE =|[8: —sel[3 = > (81 — 51)° ®)
=0
WSE =|lw: © (8: —so)|[3 = > (wi)*(5t — 51)° (6)
1=0

w: > 0 is the weight vector representing the frequency-
importance pattern for the frame s; and ©® represents the ele-
ment wise product. The DNN training remains same as before
except that the gradients are now computed with respect to the
new mean weighted squared error (MWSE, Eq 7) over a mini-
batch. X

1 o 2 2
MWSE = - ; Iwe © 8¢ —so)ll2+ AWz (D
The bigger question of describing the frequency-importance
weights needs to be answered. We propose to use psychoa-
coustic principles frequently used in audio coding for defining



w; [25]. Several psychoacoustic models characterizing human
audio perception such as absolute threshold of hearing, critical
frequency band and masking principles have been successfully
used for efficient high quality audio coding. All of these mod-
els rely on the main idea that for a given signal it is possible to
identify time-frequency regions which would be more impor-
tant for human perception. We propose to use absolute thresh-
old of hearing (ATH) [26] and masking principles [25] [29] [30]
to obtain our frequency-importance weights. The ATH based
weights leads to a global weighing scheme where the weight
w: = w? is same for the whole data. Masking based weights
are frame dependent where w; is obtained using s;.

2.2.1. ATH based Frequency Weighing

The ATH defines the minimum sound energy (sound pressure
level in dB) required in a pure tone to be detectable in a quiet
environment. The relationship between energy threshold and
frequency in Hertz (fq) is approximated as [31]

_ 6.56—0.6(%—3.3)2 + 1073(16‘%)4

®)
ATH can be used to define frequency-importance because lower
absolute hearing threshold implies that the corresponding fre-
quency can be easily heard and hence more important for hu-
man perception. Hence, the frequency-importance weights w9
can be defined to have an inverse relationship with AT H(fq).
We first compute the AT H (fq) at center frequency of each fre-
quency bin (f = 0 to IN) and then shift all thresholds such that
the minimum lies at 1. The weight w? for each f is then the
inverse of the corresponding shifted threshold. To avoid assign-
ing a 0 weight (ATH(0) = o0) to f = 0 frequency bin the
threshold for it is computed at 3/4th of the frequency range for
0" frequency bin.

ATH(fq) = 3.64(5L%)~*®

2.2.2. Masking Based Frequency Weighing

Masking in frequency domain is another psychoacoustic model
which has been efficiently exploited in perceptual audio cod-
ing. Our idea behind using masking based weights is that noise
will be masked and hence inaudible at frequencies where speech
power is dominant. More specifically, we compute a masking
threshold MT H(fq) based on a triangular spreading function
with slopes of +25 and -10dB per bark computed over each
frame of clean magnitude spectrum [25]. MT H(fq): are then
scaled to have maximum of 1. The absolute values of logarithm
of these scaled thresholds are then shifted to have minimum at
1 to obtain w¢. Note that, for simplicity, we ignore the differ-
ences between tone and noise masking. In all cases weights are
normalized to have their square sum to N.

3. Experiments and Results

As stated before our goal is to study speech enhancement us-
ing DNN in conditions similar to real-world environments. We
chose office-environment for our study. We collected a total of
95 noise samples as representative of noises often observed in
office environments. Some of these have been collected at Mi-
crosoft and the rest have been obtained mostly from [32] and
few from [33]. We randomly select 70 (set N7T'r) of these
noises for creating noisy training data and the rest 25 ( set N1'e)
for creating noisy testing data. Our clean database source is
TIMIT [34], from which train and test sets are used accordingly
in our experiments. Our procedure for creating multiple-mixed
noise situation is as follows.

For a given clean speech utterance from TIMIT training set
a random number of noise samples from N7T'r are first cho-
sen. This random number can be at most 4 i.e at most four
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noises can be simultaneously present in the utterance. The cho-
sen noise samples are then mixed and added to the clean utter-
ance at a random SNR chosen uniformly from —5 dB to 20 dB.
All noise sources receive equal weights. This process is re-
peated several times for all utterances in the TIMIT training
set till the desired amount of training data have been obtained.
For our testing data we randomly choose 250 clean utterances
from TIMIT test set and then add noise in a similar way. The
difference now is that the noises to be added are chosen from
NTe and the SNR values for corruption in test case are fixed
at {—5,0,5,10,15,20} dBs. This is done to obtain insights
into performance at different degradation levels. A validation
set similar to the test set is also created using another 250 ut-
terances randomly chosen from TIMIT test set. This set is used
for model selection wherever needed. To show comparison with
classical methods we use Log-MMSE as baseline.

We first created a training dataset of approximately 25
hours. Our test data consists of 1500 utterances of about 1.5
hours. Since, DNN is data driven approach we created another
training dataset of about 100 hours to study the gain obtained
by 4 fold increase in training data. All processing is done at
16KHz sampling rate with window size of 16ms and window
is shifted by 8ms. All of our DNNs consists of 3 hidden layers
with 2048 nodes and sigmoidal non-linearity. The values of 7
and X are fixed throughout all experiments at 5 and 10™°. The
F'in Eq 4 is 8. The learning rate is usually kept at 0.05 for first
10 epochs and then decreased to 0.01 and the total number of
epochs for DNN training is 40. The best model across different
epochs is selected using the validation set. CNTK [35] is used
for all of our experiments.

We measure both speech quality and speech intelligibility
of the reconstructed speech. PESQ [36] is used to measure
the speech quality and STOI [37] to measure intelligibility. To
directly substantiate the ability of DNN in modeling complex
noisy log spectra to clean log-spectra we also measure speech
distortion and noise reduction measure [14]. Speech distortion
basically measures the error between the DNN’s output (log
spectra) and corresponding desired output or target (clean log
spectra). It is defined for an utterance as SD = M
Noise reduction measures the reduction of noise in each noisy-

feature frame n; and is defined as NR = M Higher
NR implies better results, however very high NR might result in
higher distortion of speech. This is not desriable as SD should
be as low as possible. We will be reporting mean over all utter-
ances for all four measures.

Table 1 shows the PESQ measurement averaged over all ut-
terances for different cases with 25 hours of training data. In
Table 1 LM represents results for Log-MMSE, BD for DNN
without feature expansion at input. BSD is DNN with feature
expansion at input (y’,) using Eq 4 and BED DNN with y’,
using a running estimate of noise (&) in each frame using [24].
Its clear that DNN based speech enhancement is much superior
compared to Log-MMSE for speech enhancement in multiple-
noise conditions. DNN results in significant gain in PESQ at all
SNRs. The best results are obtained with BED. At lower SNRs
(=5, 0 and 5 dB) the absolute mean improvement over noisy
PESQ is 0.43, 0.53 and 0.60 respectively which is about 30%
increment in each case. At higher SNRs the average improve-
ment is close to 20%. Our general observation is that DNN
with weighted error training (MWSE) leads to improvement
over their respective non-weighted case only at very low SNR
values. Due to space constraints we show results for one such
case, BSWD, which corresponds to weighted error training of



Table 1: Avg. PESQ results for different cases

SNR(dB) | Noisy | LM | BD | BSD | BED | BSWD
-5 1.46 1.61 | 1.85 | 1.84 | 1.89 1.88
0 1.77 | 2.02 | 2.26 | 2.28 | 2.30 2.26
5 2.11 241 | 2.64 | 270 | 271 2.65
10 2.53 2.83 | 3.05 | 3.12 | 3.12 3.04
15 2.88 | 3.14 | 337 | 343 | 342 3.42
20 3. 23 3.44 | 3. 61 3. 68 3.68 3.60
0.95 -Nmsy
02 [ \BSD
0.85 BBED
_ os EBswD
2o.7s
® 0.7
0.65
0.6
0.55 II
SNR(dB)

Figure 1: Average STOI Comparison for Different Cases

BSD. The better of the two weighing schemes is presented. On
an average we observe that improvement exist only for —5dB.

For real world applications its important to analyze the in-
telligibility of speech along with speech quality. STOI is one of
the best way to objectively measure speech intelligibility [37]. It
ranges from O to 1 with higher score implying better intelligibil-
ity. Figure 1 shows speech intelligibility for different cases. We
observe that in our multiple-noise conditions, although speech
quality (PESQ) is improved by Log-MMSE it is not the case
for intelligibility(STOI). For Log-MMSE, STOI is reduced es-
pecially at low SNRs where noise dominate. On the other hand,
we observe that DNN results in substantial gain in STOI at
low SNRs. BED again outperforms all other methods where
15 — 16% improvement in STOI over noisy speech is observed

—5and 0 dB.

For visual comparison, spectrograms for an utterance cor-
rupted at 5dB SNR with highly non-stationary multiple noises
(printer and typewriter noises along with office-ambiance
noise) is shown in Figure 2. The PESQ values for this utterance
are; noisy = 2.42, Log-MMSE = 2.41, BED DNN = 3.10. The
audio files corresponding to Figure 2 have been submitted as
additional material. Clearly, BED is far superior to Log-MMSE
which completely fails in this case. For BEWD (not shown due
to space constraint) the PESQ obtained is 3.20 which is high-
est among all methods. This is observed for several other test
cases where the weighted training leads to improvement over
corresponding non-weighted case; although on average we saw
previously that it is helpful only at very low SNR(—5 dB). This
suggests that weighted DNN training might give superior results
by using methods such as dropout [38] which helps in network
generalization. !

The SD and NR values for different DNN’s are shown in
Table 2. For the purpose of comparison we also include these
values for Log-MMSE. We observe that in general DNN archi-
tectures compared to LM leads to increment in noise reduction
and decrease in speech distortion which are the desirable situ-
ations. Trade-off between SD and NR exists and the optimal
values leading to improvements in measures such as PESQ and
STOI varies with test cases.

Finally, we show the PESQ and STOI values on test data
for DNNs trained with 100 hours of training data in Table 3.
Larger training data clearly leads to a more robust DNN leading
to improvements in both PESQ and STOI. For all DNN models

'Some more audio and spectrogram examples are available at [39]
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Table 2: Average SD and NR for different cases

SNR LM BD BSD BED BSWD
dB NR | SD [ NR | SD | NR | SD | NR | SD | NR | SD
-5 318 | 3.1 | 412 | 2.02 | 455 | 1.90 | 4.10 | 1.93 | 419 | 1.92
0 3.07 | 272 | 347 | 1.75 | 378 | 1.63 | 3.51 | 1.65 | 3.56 | 1.66
5 288 | 237 | 29 | 148 | 3.04 | 1.39 | 2.88 | 14 | 296 | 141
10 253 | 202 | 232 | 1.27 | 236 | 1.18 | 225 | 1.19 | 2.34 | 1.19
15 216 | 1.74 | 181 | 1.12 | 1.79 | 1.03 | 1.71 | 1.03 | 1.79 | 1.04
20 1.81 | 148 | 1.41 | 1.00 | 1.35 | 0.89 | 1.28 | 0.89 | 1.36 | 0.91

(c)

Figure 2: Spectrograms (a) clean utterance (b) Noisy (c) Log-
MMSE (d) DNN Enhancement (BED)

Table 3: Average PESQ and STOI using 100 hours training data

SNR Noisy BSD BED

dB | PESQ | STOI PESQ STOI PESQ | STOI | PESQ | STOI
-5 146 | 0.612 | 1.92 | 0.703 193 10712 | 1.96 | 0.717
0 1.77 |1 0714 | 232 | 0804 | 235 | 0.812 | 236 | 0.812
5 211 | 0.813 | 2.69 | 0.872 | 2.75 | 0.881 274 | 0.879
10 253 | 0.898 | 3.09 | 0923 | 3.14 | 0928 | 3.14 | 0.928
15 2.88 | 0945 | 340 | 0950 | 344 | 0954 | 3.44 | 0.953
20 323 10974 | 3.67 | 0965 | 3.72 | 0970 | 3.71 | 0.970

improvement over the corresponding 25 hour training can be
observed.
4. Conclusions

In this paper we studied speech enhancement in complex condi-
tions which are close to real-word environments. We analyzed
effectiveness of deep neural network architectures for speech
enhancement in multiple noise conditions; where each noise
can be stationary or non-stationary. Our results show that DNN
based strategies for speech enhancement in these complex sit-
uations can work remarkably well. Our best model gives an
average PESQ increment of 23.97% across all test SNRs. At
lower SNRs this number is close to 30%. This is much superior
to classical methods such as Log-MMSE. We also showed that
augmenting noise cues to the network definitely helps in en-
hancement. We also proposed to use running estimate of noise
in each frame for augmentation, which turned out to be espe-
cially beneficial at low SNRs. This is expected as several of
the noises in the test set are highly non-stationary and at low
SNRs these dominant noises should be estimated in each frame.
We also proposed psychoacoustics based weighted error train-
ing of DNN. Our current experiments suggests that it is help-
ful mainly at very low SNR. However, analysis of several test
cases suggests that network parameter tuning and dropout train-
ing which improves generalization might show the effectiveness
of weighted error training. We plan to do a more exhaustive
study in future. However, this work does give conclusive evi-
dence that DNN based speech enhancement can work in com-
plex multiple-noise conditions like in real-world environments.
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