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Abstract

We present the weighted minimum variance distortionless re-

sponse (WMVDR), which is a steered response power (SRP)

algorithm, for near-field speaker localization in a reverberant

environment. The proposed WMVDR is based on a machine

learning approach for computing the incoherent frequency fu-

sion of narrowband power maps. We adopt a radial basis

function network (RBFN) classifier for the estimation of the

weighting coefficients, and a marginal distribution of narrow-

band power map as feature for the supervised training opera-

tion. Simulations demonstrate the effectiveness of the proposed

approach in different conditions.

Index Terms: speaker spatial localization, near-field reverber-

ant environment, broadband MVDR, machine learning, RBFN.

1. Introduction

Speaker spatial localization using microphone arrays is of

considerable interest in applications of teleconferencing sys-

tems, hands-free speaker acquisition, human-machine interac-

tion, sound recognition, and audio surveillance, both in indoor

and outdoor space [1, 2, 3, 4, 5]. The steered response power

(SRP) algorithms are a class of direct methods used to estimate

the sound source position in space. The SRP is based on maxi-

mizing the power output of a beamformer. Typically, broadband

SRP is computed in the frequency-domain by applying a dis-

crete Fourier transform on a portion of the signal and by calcu-

lating the response power on each frequency bin. Subsequently,

a fusion of these estimates is computed and the estimation of

the speaker position is obtained by searching the maximum on

the response power map of a target search area. The fusion of

narrowband SRP can be obtained by incoherent [6, 7, 8] or co-

herent [9, 10, 11] averaging with respect to frequency.

In this paper, we present an incoherent frequency fusion

method based on a machine learning approach. We consider the

broadband minimum variance distortionless response (MVDR)

beamformer for speaker localization in a near-field reverberant

environment. The MVDR is a SRP algorithm based on the nar-

rowband adaptive Capon beamformer [12]. Due to the nonsta-

tionarity property of speech signals, incoherent averaging effec-

tiveness decreases when the signal-to-noise ratio (SNR) varies

at each frequency bin, since the acoustic power map estimate

at some frequencies may be affected by large errors, and the

final frequency data combination may be inaccurate. In [8], it

is shown that a post-filter normalization of each frequency re-

sponse map substantially improves the spatial resolution of the

MVDR beamformer, which is more robust against noise if com-

pared to other algorithms. Unfortunately, the normalization has

the disadvantage of emphasizing the noise in those frequencies

in which the SNR is low, due to the quasi-periodic of the speech

signal in certain voiced fragments. To mitigate this problem, we

propose a weighted MVDR (WMVDR) beamformer, which is

based on a radial basis function network (RBFN) [13] classi-

fier for selecting only the frequency response maps that give

a correct contribution to the final fusion of narrowband beam-

forming. By using the marginal distribution of acoustic maps as

input vector, the RBFN is trained to classify the frequency maps

in two classes (positively contributing maps vs maps providing

a wrong contribution). If compared to other supervised learn-

ing approaches in the literature, in which classifiers are used

to directly map the acoustic cues onto a position in the search

space [14, 15, 16], in the proposed scheme the machine learn-

ing component can be paired to SRP methods, thus providing an

incremental contribution to the localization performance. Sim-

ulations are shown to verify the effectiveness of the proposed

machine learning approach in near-field reverberant rooms.

2. Near-field localization using MVDR
beamformer

We consider a speech source that is active at time k in a rever-

berant room G = Gx × Gy × Gz , and we assume the source

to be in the near-field. We can write the unknown coordinate

position of the source as

rs(k) = [xs ys zs]
T

(1)

and the positions of M microphones as

rm = [xm ym zm]T m = 1, 2, . . . ,M. (2)

Consider a time-domain signal block of L samples at time k
(time index is omitted in the frequency-domain for simplicity),

the reverberant model in frequency-domain can be expressed as

Xm(f) = Hm(f)S(f) + Vm(f) (3)

where m = 1, 2, . . . ,M , f is the frequency bin index, S(f) is

the speech signal, Vm(f) is the uncorrelated noise signal, and

Hm(f) is the acoustic transfer function from the speaker to the

microphone m.

The MVDR beamformer [12] is one of the well-known

adaptive beamforming techniques. Beamforming can be seen as

a filtered combination of the delayed signals, and the frequency-

domain output in matrix notation for frequency f can be written

as

Y (f) = WH(f)X(f) (4)

where X = [X1(f) X2(f) . . . XM (f)]T , W(f) =
[W1(f) W2(f) . . .WM (f)]T is the beamformer weights for

steering and filtering the data, and the superscript H represents
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the Hermitian (complex conjugate) transpose. The power spec-

tral density of the beamformer output is given by

P (f) = E[|Y (f)|2] = WH(f)Φ(f)W(f) (5)

where Φ(f) = E[X(f)XH(f)] is the cross-spectral density

matrix and E[·] denotes mathematical expectation.

Consider a generic space position rg = [xg yg zg]
T in

the target area, the MVDR filter relies on the solution of the

minimization problem

argmin
W(f)

WH(f)Φ(f)W(f) s.t. WH(f)A(f, rg) = 1 (6)

where A(f, rg) is the steering vector corresponding to a given

position rg , and it depends on the time difference of arrival

(TDOA) of the spherical wavefront between microphones. We

can write the TDOA between microphone i and j as

τi,j =
||ri − rg|| − ||rj − rg||

c
(7)

where || · || denotes Euclidean norm and c is the speed of sound.

In the near-field, the steering vector takes the form

A(f, rg) = [1, e
j2π(f−1)τ1,2

L , . . . , e
j2π(f−1)τ1,M

L ]T . (8)

The aim of the MVDR filter is to minimize the energy of noise

and sources coming from different directions, while keeping a

fixed gain on the desired position. Solving (6) using the method

of Lagrange multipliers, we obtain

W(f) =
Φ−1(f)A(f, rg)

AH(f, rg)Φ−1(f)A(f, rg)
. (9)

In real applications, the inverse of the cross-spectral density ma-

trix can be calculated using the Moore-Penrose pseudoinverse,

defined as Φ+ = VS−1UH , where Φ = USVH is the singu-

lar value decomposition of the matrix Φ. Moreover, if Φ is ill-

conditioned, the spatial spectrum could be deteriorated by steer-

ing vector errors and finite sample effect. Therefore, a diagonal

loading (DL) [17] method is adopted to calculate the inverse

matrix in a stable way. The power spectrum of the beamformer

output with MVDR filter and DL becomes

P (f, rg) =
1

AH(f, rg)(Φ(f) + µI)+A(f, rg)
(10)

where I is the identity matrix and the loading level is µ =
1
L

trace[Φ(f)]∆, where ∆ is the normalized loading constant

and trace[·] denotes the sum of the elements on the main diag-

onal of the cross-spectral density matrix.

The broadband MVDR using an incoherent arithmetic

mean is given by

PMVDR(rg) =

∫

f

P (f, rg)df (11)

and the normalized MVDR (NMVDR) [8] can be written as

PNMVDR(rg) =

∫

f

P (f, rg)

max
r′g

[Pr′g (f)]
df (12)

where Pr′g (f) = [P (f, r′1), P (f, r′2), . . . , P (f, r′g), . . . ] is the

frequency power map for all the desired positions r′g ∈ G and

max[·] denotes the maximum value. The normalization has the

beneficial effect of increasing the spatial resolution [8], and thus

it allows a better identification of direct path and reflections.

Finally, the speaker spatial localization is estimated by picking

the maximum value on the fusion map

r̂s(k) = argmax
r′g

[Pr′g ] (13)

where Pr′g = [P (r′1), P (r′2), . . . , P (r′g), . . . ] is the acoustic

power map for all the desired positions.

3. Acoustic map selection using RBFN

Both MVDR and NMVDR have the disadvantage that, in noisy

or reverberant conditions, some of the frequency maps in the

fusion may exhibit an energy peak corresponding to a wrong

position in the search space, thus providing a wrong contribu-

tion to the fusion map. To avoid to use this wrong information,

we introduce the following weighted MVDR (WMVDR):

PWMVDR(rg) =

∫

f

γf
P (f, rg)

max
r′g

[Pr′g (f)]
df (14)

where γf are weighting factors which attenuate those compo-

nents that do not contribute positively to the correct localization

of the acoustic source. Given a reference source position rs,

and being

r̂s(k, f) = argmax
r′g

[Pr′g (f)] (15)

the estimate of the source position computed using only the in-

formation related to frequency f , the contribution at f to the

localization error is defined as

E(f, rs) = ||rs − r̂s(f)||. (16)

The weighting factors γf are modeled by a RBFN classifier,

which is trained to attenuate those components which contribute

negatively to the localization. Namely, the training set output of

the RBFN is set as

γf =

{
0 if E(f, rs) > Th

1 if E(f, rs) < Th
(17)

where Th is a given threshold. The training set input is defined

as the marginal distribution of the acoustic maps along x, y, and

z axes:

If (x) =

∫

y

∫

z

P (f, rg)dydz, ∀x ∈ Gx (18)

If (y) =

∫

x

∫

z

P (f, rg)dxdz, ∀y ∈ Gy (19)

If (z) =

∫

x

∫

y

P (f, rg)dxdy, ∀z ∈ Gz (20)

The input vector If = [If (x) . . . f(y) . . . If (z)]
T is a combi-

nation of the marginal distributions.

The RBFN supervised model, which is responsible to com-

pute the weighting coefficients γf from the marginal distribu-

tion of acoustic maps, is then defined as

γf =

Q∑

i=0

wi,fψi(If ;di) (21)

with ψi(If ;di) being the Q radial kernels of the expansion, di

being the set of parameters of the ith kernel, and wi,f being the
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Figure 1: The simulated room setup with the positions of the

array and sources.

expansion coefficients. If compared to commonly used Gaus-

sian functions, compactly supported kernels lead to sparse and

better conditioned kernel matrices, with computational advan-

tages both during training of the models and during run of the

trained models [18]. Thus we decided to use a Wendland kernel

of the form ψ(If ;m, σ) = (1− r)8+(32r
3 + 25r2 + 8r + 1),

with r = ||If −m||/σ being the distance of the input data from

the center m of the kernel, weighted by the width parameter σ.

The expansion coefficients wi,f can be computed by choosing

among a number of training algorithm available to date. In this

paper, we used a greedy OLS training algorithm, that iteratively

adds a new kernel to the expansion in the position that maxi-

mally contribute to reduce the training data reconstruction error

[19].

4. Simulations

The localization performance of the proposed machine learn-

ing approach is illustrated through a set of simulated experi-

ments. A uniform linear array of 8 microphones was used. The

distance between microphone was 0.2 m. The image-source

method (ISM) was used to simulate reverberant audio data in

room acoustics [20]. The ISM assumes that source and micro-

phones are omnidirectional. A room of (5×4×3) m was used.

The localization in a two-dimensional plane was considered,

and therefore both microphones and the source were positioned

at a distance from the floor of 1.3 m. The room setup is depicted

in Figure 1. We consider three source positions: s1, s2, and s3.

The acoustic map is computed on a grid with spatial resolution

of 0.1 m. Note that the source were positioned on points of the

grid. The reverberant condition has been set to 0.3 s reverbera-

tion time (RT60). A 21 s duration adult female speech and a 24

s duration adult male speech were used as source signals. The

tests were conducted by setting a SNR of 30 dB, which was ob-

tained by adding mutually independent white Gaussian noise to

each channel. The sampling frequency was 44.1 kHz, the block

size L was 2048 samples. A frequency range between 80 Hz

and 8000 Hz, since it is a typical spectrum range of speech sig-

nals, was used for computing the MVDR response power. We

compare the performance of MVDR, NMVDR, and WMVDR.

The localization performance has been evaluated with several

Monte Carlo simulations, using 30 run-trials for each condition

test. The RBFN parameters were set to σ = 1 and Q = 100.

The threshold parameter was set to Th = 0.5 m. These values

was determined empirically.

Table 1: RMS (m) error of localization performance.

MVDR NMVDR WMVDR

Test 1 1.42 0.73 0.55

Test 2 1.32 0.68 0.54

Test 3 1.11 0.74 0.63

Table 2: RBFN statistic (%) for three frequency ranges.

80-400 Hz 400-2000 Hz 2000-8000 Hz

Reject Map 91.1 79.5 86.1

RBFN Error 31.8 36.7 21.9

Three experiments have been conducted: Test 1 - Same

speaker and same position: the female speech signal was po-

sitioned in s1 and the RBFN was trained on the first 5 % of the

signal. The localization performance was evaluated on the sec-

ond 95 % of the signal. Test 2 - Different speakers and same

position: the female speech signal was positioned in s1 and the

RBFN was trained on the first 5 % of the signal. The local-

ization performance was evaluated on the speech male signal

in position s1. Test 3 - Same speaker and different positions:

the female speech signal was positioned in s1 and the the first

2.5 % of the signal was used to collect the training set vector.

Then, the female speech signal was positioned in s2 and the the

first 2.5 % of the signal was used to collect more data training

set. The localization performance was evaluated on the female

speech signal in position s3. The performance was evaluated

with root mean square (RMS) error for all estimates. The results

are shown in Table 1. We can observe the best performance of

the WMVDR, and the capability of the RBFN classifier to select

frequency maps for a different speaker and for a different posi-

tion. Moreover, the results prove that the normalized post-filter

is effective in a reverberant environment, since only free-field

noise condition is considered in [8]. Figure 2 shows the acous-

tic maps at a specific analysis block for the female speech in

position s1 (Test 1). Table 2 shows some statistics of the RBFN

considering three frequency ranges. The percentage of rejection

was evaluated using equation (17), and the percentage of RBFN

error was evaluated testing the training set. The error was de-

fined by an absolute different value of the weighting factor γf
greater than 0.3. We can note that the number of incorrect maps

increases at low and high frequencies, and that the RBFN error

is grater in the range 80-2000 Hz.

5. Conclusions

An incoherent combination of normalized narrowband MVDR

map based on a machine learning approach is proposed to mit-

igate the effect of incorrect narrowband power spectrum due to

SNR variability at each frequency. The WMVDR consists on

applying a selection of narrowband map using a RBFN clas-

sifier, which is trained on marginal distributions of response

power. Preliminary experiments show that a supervised learn-

ing component trained to select the useful frequency maps to

use in the acoustic information fusion can improve the perfor-

mance of spatial speaker localization using microphone arrays.

Future work includes the use of different learning algorithms

and a validation of a simulated training system in a real-world

scenario.
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Figure 2: Comparison of acoustic map estimates at a specific

analysis block for the female speech in position s1 (Test 1). The

proposed WMVDR (c) algorithm localizes the source at the cor-

rect position, while the MVDR (a) and the NMVDR (b) algo-

rithms provide an acoustic map with maximum value at incor-

rect position.
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