ISCA Archive Interspeech 2015
ISCA Archive Interspeech 2015

Dataset-invariant covariance normalization for out-domain PLDA speaker verification

Md. Hafizur Rahman, Ahilan Kanagasundaram, David Dean, Sridha Sridharan

In this paper we introduce a novel domain-invariant covariance normalization (DICN) technique to relocate both in-domain and out-domain i-vectors into a third dataset-invariant space, providing an improvement for out-domain PLDA speaker verification with a very small number of unlabelled in-domain adaptation i-vectors. By capturing the dataset variance from a global mean using both development out-domain i-vectors and limited unlabelled in-domain i-vectors, we could obtain domain-invariant representations of PLDA training data. The DICN-compensated out-domain PLDA system is shown to perform as well as in-domain PLDA training with as few as 500 unlabelled in-domain i-vectors for NIST-2010 SRE and 2000 unlabelled in-domain i-vectors for NIST-2008 SRE, and considerable relative improvement over both out-domain and in-domain PLDA development if more are available.