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Abstract 
Automatic continuous emotion tracking (CET) has received 
increased attention with expected applications in medical, 
robotic, and human-machine interaction areas. The speech 
signal carries useful clues to estimate the affective state of the 
speaker. In this paper, we present Total Variability Space 
(TVS) for CET from speech data. TVS is a widely used 
framework in speaker and language recognition applications. 
In this study, we applied TVS as an unsupervised emotional 
feature extraction framework. Assuming a low temporal 
variation in the affective space, we discretize the continuous 
affective state and extract i-vectors. Experimental evaluations 
are performed on the CreativeIT dataset and fusion results 
with pool of statistical functions over mel frequency cepstral 
coefficients (MFCCs) show a 2% improvement for the 
emotion tracking from speech. 

Index Terms: total variability space, i-vector, continuous 
emotion tracking, Gaussian mixture regression. 

1. Introduction 
Automatic continuous emotion tracking (CET) aims to 
automatically estimate the level of the emotion or affective 
state from the speech, video, and physical signals of a person. 
This goal recently has received increasing attention, and has 
the potential to define applications in medical, robotic, 
education, and commercial areas such as affective human 
machine interaction, public speaking training, autism 
monitoring, and voice response systems [1, 2]. In psychology 
literature, various affective space representations have been 
employed to model emotion [3]. In a high level categorization, 
affective space representations are divided into discrete and 
continuous models.  
Discrete models often have separate categories or 
combinations of several basic emotions, such as: neutral, 
happiness, sadness, surprise, fear, anger, and disgust. 
However, in continuous models, a vector in a multi-
dimensional space, affective space, defines the emotion along 
the time index. One of the widely used affective spaces is the 
Activation-Valence-Dominance (AVD) space, which describes 
the intensity, level of pleasure, and amount of control of the 
emotion, respectively. These are referred to as attributes or 
dimensions of the affective space [2, 4]. 
CET is a regression from feature space to affective space 
along the time index. The features can be extracted from 
speech, video or other physical signals of the person. In this 
paper, we look at the speech channel, but the methods can be 
combined with other channels in a multimodal framework. 
Along time, CET can be applied in a frame level or a window 
level resolution [4]. In the frame level, the durations of the 
units are roughly less than 0.5 sec; hence, a good time 

precision can be obtained and the features can be defined over 
frames. However, from psychological point of view [5], we 
know that the overall duration of the emotions is 0.5 to 4 sec. 
Hence, the window level methods of CET where a single 
vector represents the affective state over a temporal window of 
several seconds are more suitable. 
Obtaining high level feature sets over a number of frames in a 
window of time is one of the challenges that we address in this 
paper. This challenge is also addressed as sequence 
summarization in action recognition by video processing [6]. 
In [4], for the window level resolution, they used a variety of 
statistical functionals followed by principal component 
analysis (PCA) for dimensionality reduction and trained a 
dynamic Gaussian mixture regression (GMR) to track the 
AVD attributes. In this paper, we use Total Variability Space 
(TVS) to summarize the frames of a temporal window. 
TVS is among the state of the art systems for speaker 
verification. It defines two spaces, namely speaker variability 
and session variability, and extracts the features that are more 
informative for speaker verification. Recently it has received 
increased attention in other applications such as age estimation 
[7] and discrete emotion classification [8]. The reported results 
in [8] show that TVS can model the emotion variability as well 
as speaker variability. Although using TVS for discrete 
emotion classification is just a generalization of TVS for 
speaker verification, it cannot be directly used for CET. TVS 
based feature extraction should be defined over temporal 
windows where in each window sufficient statistical 
information is needed to define TVS. In this paper, we present 
a new framework for CET by defining TVS-based feature 
extraction over temporal windows and by mapping the i-
vectors of the speech signal to the continuous affective space 
dimensions.  
The rest of the paper is organized as follows: in section 2, we 
define the proposed CET system. In section 3, we introduce 
the datasets in use, system setup, and experimental results. 
Conclusions are given in section 4. 

2. Continuous Emotion Tracking 
We use frame level and window level resolution for the 
baseline systems. For the frame level system, as described in 
[4], a 16.66 msec frame of speech data with 50% overlap is 
used to extract MFCC features and then GMR is applied to 
estimate the affective state. For the window level system, we 
summarized the features over overlapping temporal windows 
using a summarization function, ℱ: ℛ�∗� → ℛ�, in which m 
is the dimension of features for each frame, N is the number of 
frames over a time window, and k is the dimension of the 
summarized features. In the literature, a variety of statistical 
functions such as mean, standard deviation, median, minimum, 
maximum, range, skewness, kurtosis, the lower and upper 
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quantiles (corresponding to the 25th and 75th percentiles) and 
the interquantile range followed by PCA to reduce the 
dimension, is used for summarization purpose [4]. Another 
option is to concatenate all the frame level features of the 
window and then apply PCA to reduce the dimension. Similar 
to the frame level system, GMR maps the window level 
features to the affective state. Unlike the frame level resolution 
the estimated affective states in the window level system do 
not have the same sampling rate as the original annotation 
data. So we interpolate the affective dimensions at the frame 
rate and calculate the mean of the affective dimensions over 
the overlapping windows. 
In our CET system, speech signal feature summarization is 
performed using TVS. In section 2.2, we first describe TVS in 
terms of emotion and state variability, then we present the 
discretization method in section 2.3, and finally we present the 
whole model for CET in section 2.3. 

2.1. Total Variability Space 
TVS is a widely used framework in speaker and language 
recognition applications, and refers to speaker, language and 
session variability spaces. In the TVS first a Gaussian mixture 
model models the distribution of the data: 

	(
) =  ∑ �� �
; �, ����
�� ,  (1) 

where 
 is the speech feature space, ω�, μ�, and Σ� are the 
weight, mean vector, and covariance matrix of the i'th 
Gaussian mixture respectively and M is the total number of 
mixtures. Then the super-vector, which is the concatenation of 
mean vectors μ�, is mapped to a lower dimensional TVS space 
as, μ = m + Tw, where μ is the super-vector, m is a 
representor, usually the concatenated mean vectors of the 
universal background model (UBM), T matrix represents the 
TVS basis, and w is the extracted feature vector, which is 
known as i-vector in verification literature. The details of 
calculating of T matrix are given in [9]. 
In the emotion tracking problem, we can similarly define 
emotion variability and state variability spaces. The primary 
space of the continuous emotion is the AVD dimensions of the 
affective space. The secondary space stands for any other 
differences between the recordings of the same affective 
dimensions (such as the affective variability over the speakers, 
environment or context). By combining these two spaces we 
can define the TVS for the emotion tracking problem. 
Recently i-vector has been used for feature extraction in 
discrete emotion classification [8]. In [8] they used the whole 
utterance of a single emotion, as 
 in (1), to generate μ and w, 
then performed classification task. However in our framework, 
we target the CET problem in the AVD space. Hence, we need 
a population of data representing an affective state value to 
extract the i-vector representation in (1). Therefore, we used 
overlapping temporal windows for speech signal and 
performed a window level discretization of frame level 
affective dimensions. In the next subsection we describe the 
discretization of AVD space. 

2.2. Discretization of Continuous Emotion 
Continuous emotion is represented in AVD dimensions. These 
three dimensions build a continuous space where affective 
state takes values from this space at each time frame. These 
continuous attributes help to track the emotion of a person 

along time. Assuming a slowly changing affective state, we 
modeled AVD dimensions as a single point to represent the 
emotional content of a temporal window. Then overlapping 
temporal windows were utilized for the discretization of the 
continuous emotion space. The AVD point that represents a 
temporal window can be the average, median or any other 
statistics of the AVD dimensions in the corresponding 
window. A distortion metric for the discretization of 
continuous emotion space is defined as: 

e� = � 
1

NL�
 �      � (a� − α�)!

�∗"#$"%&�

���∗"#

�&�

��'

,    (2) 

where a� is one of the AVD dimensions at time t, α� is the 
discrete representation of a� in the i-th window with L� 
samples, L* is the time shift of the window in samples, and N 
is the total number of windows. We use α� as the mean 
attribute of the window i, so the distortion e� can be 
interpreted as the standard deviation of attributes. We can 
choose the window length L� based on an accepted tolerance 
of discretization distortion. After the discretization, we are 
able to extract the μ and w vectors for each window. 

2.3. Continuous Emotion Tracking System 
Our CET system is based on the TVS and GMR. Figure 1 
depicts a block diagram of the proposed system model. In 
Figure 1(a) we train the UBM and extract the T matrix over 
training data that contains emotion and state variability. Then 
in Figure 1(b), we calculate the i-vector, w�, for the i’th 
window of the speech data. In Figure 1(c) discretization of the 
affective dimensions is performed over overlapping windows 
based on (2). Discrete affective dimension values are taken as 
emotion labels of the windows. Then we train the GMR model 
with the i-vectors and corresponding labels. In Figure 1(d) we 
use the GMR model and estimate the emotion labels for a test 
i-vector, which is extracted from the test speech signal. After 
the GMR, the estimated attributes, α-�, are low-pass filtered for 
smoothing as in [9]. To achieve the same time resolution we 
interpolate the smoothed values as stated in section 2.1. 
Although the mean square error between the estimated and 
mean of the annotators’ AVD dimensions is a possible 
evaluation metric, we choose to evaluate the performance with 
the correlation metric since variation of the AVD dimensions 
is more important than the exact values.  

3. Experimental Results 

3.1. Datasets 
To train the UBM and extract the T matrix we use four 
different datasets, which contains emotion and state 
variability. Since training the UBM is unsupervised, we do not 
need annotation information. Hence, we use IEMOCAP [10], 
Vera am Mittag (VAM) [11], IS10 Paralinguistic Challenge 
[12], and Interspeech 2009 Emotion Challenge (IS09) [13] 
datasets for the training of the UBM.  These datasets contain 
more than 30 hours of affective speech.  
On the other hand, we need a dataset, which contains 
continuous annotation for testing the i-vector representation 
and CET. We use the CreativeIT dataset [14], which includes 
improvised dyadic interactions with continuous annotation of 
AVD dimensions. This dataset contains 8 sessions, where in 
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each session there are two actors. They improvise an 
interaction (such as, accepting or rejecting a request) and their 
speech is recorded by two microphones separately. Each 
session contains 5 conversations, where each conversation has 
an average duration of 4-5 minutes. Continuous annotations in 
AVD space are provided by three or four annotators. The 
annotation streams are normalized between -1 and 1 after a 
post-processing of low-pass filtering and delay compensation. 
The mean of the annotator curves is defined as the affective 
dimension a�. Furtheremore the mean of the pairwise 
correlations of the multiple annotator curves are defined as the 
ground truth correlation score. 
 

Table 1. Notations and descriptions of the test conditions 

Estimate Test name Test details 

./0,2 Frame level MFCCs + GMR per frame 

./0,3 Stat_PCA Statistical functionals of 
MFCCs + PCA + GMR per 
window + interpolation 

./0,� MFCC_PCA Concatenation of MFCCs 
over a window + PCA + 
GMR per window + 
interpolation 

./0,4 i-vector i-vector generation over a 
window + GMR per window 
+ interpolation 

3.2. System Setup 
We perform the CET in frame and window level resolution. 
Since the valence is more related to the facial expressions and 

speech provides poor valence information, we just report 
tracking results of the activation and dominance dimensions in 
this study. For both tasks we employ an automatic voice 
activity detector (VAD) [15] to remove the silent segments of 
the speech recordings. To obtain same size of voiced data after 
VAD for both resolutions, we apply VAD on the window level 
resolution. We keep the windows with more than 40% active 
speech. For the frame level system, we used the 16.66 msec 
frame size with 50% overlapped, which are compatible with 
the annotation rate. We use the α� as the mean attribute of each 
window. Figure 2 plots the mean discretization distortion e� as 
a function of window duration with fixed time shift equal to 1 
sec. We choose the window length as 3 sec, where the 
distortion is less than 5% for all dimensions.  
An acoustic feature vector is computed over each frame. Each 
acoustic feature is a 39 dimensional vector, which includes the 
energy, the first 12 MFCCs plus the first and second time 
derivatives. 
We define four different tests. Three of them are in the 
window level resolution and one of them is in the frame level. 
The details are given in Table 1. To map the feature space on 
affective space we used dynamic GMR with 4 mixture 
components as provided in [4]. 
The number of Gaussian mixtures for TVS system (M), the 
dimension of i-vectors and PCA output dimension are set in an 
eight-fold cross validation to maximize the mean correlation 
scores. Each fold contains one of the sessions, so that train and 
test have different actresses/actors. The estimated and 
annotators’ emotion dimensions are low-pass filtered for 
smoothing. We use 32 Gaussian mixtures with diagonal 
covariance for TVS and 10 expectation-maximization 
iterations for the extraction of UBM and T matrix. We employ 
30 dimensional i-vectors. The MSR Identity Toolbox [16] is 
used for UBM and TVS calculation. We adjust the PCA output 
dimension as 30 for MFCC_PCA and 40 for Stat_PCA tasks. 

 
Figure 1:  An overview of the method, (a) TVS training, (b) i-vector extraction, (c) discretizing the features and GMR training, and (d) 
affective state estimation and low pass filter smoothing. 
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3.3. Results and Discussion 
To evaluate the performance we calculate the mean correlation 
across recordings between the affective dimension, a�, and the 
estimated affective dimension a/�,5 of the i-vector task as, 

r5 =
1
K �

cov(a�
�, a/�,5

� )
std(a�

�)std(a/�,5
� )

6

���
,     (3) 

where a5
� represents the affective dimension for recording k, 

and K is the total number of recordings in the dataset. The 
mean correlations for other tasks can be defined similarly to be 
r7, r8 and r9. We present the mean correlation in Table 2 for 
different tasks. The last row of this table is the mean of the 
ground truth correlation scores calculated similar to [4]. 

Table 2. Mean correlation and mean ground truth 
correlation scores 
Methods Activation Dominance 

i-vector 0.4737 0.1439 
Stat_PCA 0.4784 0.1331 
MFCC_PCA 0.4428 0.1300 
Frame level 0.2909 0.0956 

Mean GT Score 0.6199 0.6200 

We observe significant improvement from the frame level to 
the window level resolution as also observed in [4]. This could 
be due to the slowly varying nature of the affective state. 
Among the window level tasks, the MFCC_PCA has the 
poorest performance. A possible reason is that the principal 
directions of the concatenated MFCCs are more informative 
for the speaker and lexicon variability and is not good for 
emotion recognition. On the other hand, i-vector and 
Stat_PCA have similar mean correlation performance, 
especially for the activation dimension.  
We would like to check whether the i-vector and statistical 
features deliver similar correlation performances along with 
the ground truth correlation scores. To illustrate this 
relationship we plot correlation score differences of tasks as a 
function of the underlying ground truth correlation score range 
in Figure 3. We use intervals of 0.05 ground truth correlation 
scores. For example, at 0.5 ground truth correlation score we 
present three mean correlation differences, r5 − r7, r5 − r9 
and r5 − r8. These mean correlation differences are calculated 
from the segments with ground truth correlation scores 
between 0.5 and 0.55. Note that for this segment i-vector task 
mean correlation scores are higher than the frame level, 
MFCC_PCA and Stat_PCA scores. In general i-vector 
performance is better than the MFCC_PCA and frame level 
tasks. Also note that i-vector and Stat_PCA do not share 
similar correlation scores along different ground truth 
correlation score segments. So one should expect performance 
benefit from decision fusion of i-vector and Stat_PCA tasks. 
Hence we apply a decision fusion based on the likelihood 
calculated in GMR for any time index. We apply hard and soft 
decision fusions. In the soft fusion we simply find the 
weighted mean of the estimated affective dimensions, where 
weights are choosen as the normalized likelihoods. In the hard 
fusion we choose the estimated affective dimension with the 
highest likelihood.  
Table 3 presents the results of soft and hard fusion between 
different tasks. For activation, soft fusion works better and the 
best one comes from the i-vector and Stat_PCA that makes a 
2% improvement over unimodal performance. When 

MFCC_PCA is in the fusion we do not observe significant 
improvement for activation and dominance estimation. Hard 
fusion is observed to perform better for dominance estimation 
for the fusion of i-vector and Stat_PCA (around 2% 
improvement). Since the dominance estimation has low mean 
correlation, soft fusion has potential to carry noisy likelihood 
values to the decision.  

Table 3. Mean correlation of the soft and hard fusion 

Methods Activation Dominance 
Hard Soft Hard Soft 

i-vector + 
Stat_PCA 0.4468 0.4919 0.1639 0.1452 
i-vector + 

MFCC_PCA 0.4465 0.4757 0.1533 0.1423 
MFCC_PCA 
+ Stat_PCA 0.4454 0.4713 0.1339 0.1347 
i-vector + 

Stat_PCA + 
MFCC_PCA 

0.4346 0.4851 0.1574 0.1427 

4. Conclusion and Future Work 
In this paper, we employ TVS as an unsupervised emotional 
vocal channel feature extraction framework for continuous 
tracking of the affective dimensions. Furthermore, we 
compared it to the other summarization functions. Our 
experiments were performed on the CreativeIT dataset. The 
proposed i-vector and Stat_PCA estimators performed 
similarly in terms of mean correlation score. But we observed 
that those two estimators are not strongly correlated, hence a 
decision fusion of i-vector and Stat_PCA estimators attains 
more than 2% improvement.  
In the TVS literature, one of the popular ways of improvement 
is applying channel compensation techniques. When we apply 
Within Class Covariance Normalization (WCCN) and Linear 
Discriminant Analysis (LDA), we do not observe any 
improvement in the results. We can list at least two reasons for 
this observation; one is related to the limited number of data 
for different classes, and the other reason is good channels. 
Compensation is useful when we have channel variability; 
however, all of our data were recorded over the microphone 
and have high quality. Hence, channel compensation methods 
can be applied to wild data as future work.  
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