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Abstract
This paper explores the significance of an ensemble of boosted
Support Vector Machine (SVM) classifiers in the i-vector
framework for speaker verification (SV) in noisy environments.
Prior work in this field have established the significance of
supervector-based approaches and more specifically the i-vector
extraction paradigm for robust SV. However, in highly degraded
environments, SVMs trained using i-vectors are susceptible to
misclassifications. For enhanced classification accuracy, we ex-
plore the impact of multiple SVM classifiers trained by adaptive
boosting. To mitigate the effect of statistical mismatches due to
difference in utterance lengths and data imbalance caused by
a disproportionate ratio of target speaker and impostor utter-
ances, we propose a novel combination scheme of the adaptive
boosting algorithm with a data generation technique using par-
titioned utterances. All experiments are conducted on the NIST-
SRE-2003 database under mismatched conditions with training
utterances degraded by 4 types of additive noises (car, factory,
pink and white) collected from the NOISEX-92 database, at 0
dB and 5 dB SNRs. Results indicate that the proposed method
significantly outperforms the baseline i-vector SVM based SV
systems across all noisy environments.
Index Terms: Speaker Verification, Adaptive Boosting, Noisy
environments, i-vectors, Support Vector Machines.

1. Introduction
A major challenge in the area of speaker verification (SV) [1]
is to make the system robust towards its acoustic environment.
Background noise is a prominent factor causing loss of perfor-
mance accuracy in SV systems [2]. Much effort has been ded-
icated over the past to address the issue [3] and yet new ap-
proaches keep unfolding [4–8]. Since accurate estimation of
the nature of noise is infeasible, conventional methods aim to
compensate for noise degradation. Popular methods for noise
compensation at an acoustic model level include parallel model
combination (PMC) [4], [9] and vector Taylor series (VTS) [5],
[10]. Besides being computationally intensive, these techniques
assume a priori knowledge about the recognition environment
or rely on the availability of a statistical model of noise.

Acoustic modeling is used in the training stage of SV to
effectively capture the distribution of features unique to an
enrolled speaker. In the traditional Gaussian Mixture Model
(GMM)-based SV systems, acoustic speaker models are GMMs
built by Maximum a Posteriori (MAP) adaptation of a Uni-
versal Background Model (UBM) [11]. In the recent state-of-
the-art total variability modeling approach [12], variable length
speaker utterances are transformed into fixed-size i-vectors by
projecting adapted GMM supervectors to a low dimensional
subspace carrying both speaker and channel information.

It was studied in [13, 14] that i-vectors can be applied
in a discriminative framework using Support Vector Machines
(SVMs) provided certain drawbacks of the simple SVM scoring
method are mitigated using utterance partitioning with acous-
tic vector resampling (UP-AVR) [15]. The results were com-
parable and in certain cases even better than the popular Co-
sine distance scoring [16] or Probabilistic LDA (PLDA) [17].
Prior work [6, 7] also demonstrates the impact of UP-AVR in
the GMM-SVM framework for SV in noisy environments. It
has been observed that despite improved performance, the SVM
classifiers are susceptible to misclassifications in extremely de-
graded conditions i.e., low SNRs.

The present work investigates the impact of adaptive boost-
ing (AdaBoost) [18] for combining a sequence of SVM clas-
sifiers trained using i-vectors extracted from noisy utterances.
The motivation is derived from successful applications of the
AdaBoost algorithm in robust feature selection and classifica-
tion [19]. Apart from the obvious improvements expected from
the SVM ensemble, we specifically focus on addressing a few
inherent drawbacks of the UP-AVR method (see Section 2.2),
leading to an overall performance enhancement of the SV sys-
tem in noisy environments.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work in the field of SV in close context to the
issue addressed in the paper. Section 4 describes the experi-
mental setup. Experimental results are discussed in Section 5
followed by a brief conclusion of the work in Section 6.

2. Related Work
2.1. Total Variability Modeling

Total variability modeling [12] is based on projecting large di-
mensional supervectors in a low dimensional subspace (known
as ‘total variability’ space) which supposedly contains both
speaker and channel/session information. Specifically, a GMM
mean supervector M is represented as

M = m + Tw (1)

where m is a speaker/channel independent supervector (i.e.,
the UBM mean supervector), T is low-rank rectangular matrix
whose columns consists of eigenvectors of the total variability
covariance matrix with largest eigenvalues. w is a random vec-
tor having standard Normal distribution, called i-vector. The
total variability matrix (T ) is learned offline, using probabilistic
principal component analysis on a development dataset which
comprises a large number of speaker utterances [12]. In contrast
to GMM supervectors, the low dimension of i-vectors facilitates
convenient application of session compensation methods like
Linear Discriminant Analysis (LDA) [20] and Within Class Co-
variance Normalization (WCCN) [21]. Total variability model-
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ing is generative in nature, however it can be integrated into a
discriminative framework using SVMs [13, 14], [22].

2.2. Utterance partitioning with acoustic vector resampling
(UP-AVR)

UP-AVR [15], based on the principle of random resampling
in bootstrapping, divides full-length enrollment utterances into
N segments and derives an i-vector from each of them. The
process is repeated R times after randomizing the sequence of
frames in the original utterances in each iteration which yields
a total of RN + 1 vectors (including the original one). It was
studied in [13] that the discriminative power of i-vectors can
be enhanced by UP-AVR, which otherwise saturates if the ut-
terance lengths typically exceed 2 minutes. In such situations,
the excess data can be utilized by generating new vectors rather
than a single one. The three major problems alleviated by this
strategy are as follows

• Data-imbalance: The problem occurs due to the dispro-
portionate ratio of support vectors in the minority (tar-
get/enrolled) speaker class and majority (background)
speaker class which causes the SVM hyperplane to
skew towards the majority class resulting in high false-
rejection rates [23, 24].

• Mismatched utterance lengths: The problem occurs due
to statistical mismatches caused by the difference in
training and test utterance lengths which results in dif-
ferent amount of MAP adaptation [25].

• Small sample-size problem: When the number of train-
ing speakers or the number of recording sessions per
speaker are insufficient, numerical errors occur in esti-
mating transformation matrices associated with session
compensation (e.g., LDA, WCCN), resulting in infe-
rior performance, a phenomenon known as the ‘small
sample-size problem’ [26].

An inherent limitation of the UP-AVR method is the partition-
ing of all utterances irrespective of their contribution to the over-
all classification accuracy. The proposed boosting algorithm ad-
dresses this issue by selectively partitioning utterances accord-
ing to the ensemble training error.

3. Adaptive Boosting
Conventional boosting algorithms emphasize on the misclassi-
fied (hard) training instances in each iteration by adaptively in-
creasing their sampling weights. Classifiers trained in succes-
sive iterations concentrate on these instances with high weights.
Since all misclassified examples are equally weighted, it doesn’t
usually compensate for the bias towards the majority class in
imbalanced datasets. The aim of integrating data generation
with the boosting algorithm is to alleviate the learning algo-
rithm’s bias towards the majority class while retaining focus
on the hard training instances. Unlike the DataBoost-IM al-
gorithm [27], in the proposed algorithm (DataBoost-UP), data
(i-vectors) is synthesized using the utterance partitioning tech-
nique [15] instead of random generation of attribute values in
the [min,max] interval. Both the minority (target speaker) and
majority (background speakers) classes are oversampled to pre-
vent overemphasis on the hard instances of the minority class.
The proposed algorithm is used to sequentially build an ensem-
ble of SVM classifiers, the predictive accuracy of which is guar-
anteed to improve in each iteration provided the training error
of the weak SVM classifier in the previous iteration is less than

Algorithm DataBoost-UP
Input:

Training data set {(xi, yi)}Ni=1, yi ∈ {−1, +1}

Weak SVM classifiers ht where t = {1, 2..., T}

Initialize: Sampling weight distribution D1(i)=1/N
∀i = {1, 2, .., N}

Do for t← 1 to T

1. Identify the hard examples in the training set.

2. Generate new data from these examples by UP-AVR.
Add them to the original training set.

3. Adjust the sampling weight distribution of both classes
in the new training set.

4. Learn weak SVM ht on the new training set sampled
according to the modified distribution.

5. ϵt ←
N∑

i=1

Dt(i)I(ht(xi) ̸= yi). If ϵt > 0.5 set T = t-1

and abort loop.

6. αt ← 1
2

log{(1− ϵt)/(ϵt)}
7. Dt+1(i)← Dt(i)

Zt
exp(−αtht(xi)yi) where

Zt =
N∑

i=1

Dt(i) exp(−αtht(xi)yi)

Output: SVM ensemble hfinal =
T∑

t=1

αtht

0.5 (upper bound). The ensemble training error decreases in
successive iterations till the algorithm converges with a satu-
rated error-decrement rate. Steps 1, 2 and 3 of the proposed
algorithm are elaborated in the next three subsections.

3.1. Identifying hard training examples

The hard training examples are identified as follows.

1. All the instances in the training set are arranged in de-
scending order of their sampling weights.

2. The top Ntrain number of instances of the training set
are selected as hard examples where :-
Ntrain = ϵt ×N ,
ϵt = weighted training error of a SVM in the tth iteration
of boosting
N = total number of instances in the original training set.

3. Let Ntrain = Nmaj + Nmin where :-
Nmaj = number of instances from majority class,
Nmin= number of instances from minority class. These
training utterances are subjected to utterance partitioning
as discussed in Section 3.2

3.2. Synthesizing new data by utterance partitioning

The UP-AVR algorithm is applied for data generation, as fol-
lows

1. Given each of the Nmin target speaker utterance, its
acoustic vectors are computed and their sequence of oc-
currences is randomized. This randomized sequence is
then divided into P partitions (sub-utterances).
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2. Step 1. is repeated R times. Together with the original
full-length utterance, a total of RP + 1 utterances gen-
erated from each enrollment utterance are individually
subjected to i-vector construction.

3. Similarly, each background speaker’s utterances are di-
vided into P partitions. For Nmaj background speakers
we thus have Nmaj(P + 1) utterances. Background i-
vectors are constructed from each of these utterances.

3.3. Balancing weights

The aim of weight balancing is to minimize the difference be-
tween the total sampling weight of each class in an imbalanced
dataset. This compels the boosting algorithm to focus on both
the hard as well as rare training examples. The sampling weight
of each hard instance is divided by the number of new instances
generated from it. All generated instances are uniformly as-
signed the divided weight. At the end all weights are rebalanced
across the entire set of newly generated instances. If the total
weight of the majority class (Wmaj) exceeds that of the minor-
ity class (Wmin) then each minority weight is scaled by a fac-
tor Wmaj/Wmin. For the vice-versa condition, each majority
weight is scaled by a factor Wmin/Wmaj .

3.4. SVM training and scoring

A primary advantage of i-vectors is the convenience of apply-
ing advanced Bayesian scoring methods like PLDA [17], [28].
In order to exploit the advantages of PLDA scoring in a discrim-
inative framework, a novel likelihood ratio (LR) based empiri-
cal kernel [14], has been used for SVM training in the present
work. Given a set of Ts target speaker utterances (i-vectors)
XS = {xs}Ts

s=1 extracted from a claimed speaker S using UP-
AVR and a test i-vector xt, the LR score is given by

SLR(xt, xs) =
p(xt, xs|same speaker)

p(xt, xs|different speakers)
(2)

where p(.) denotes probability. The empirical LR kernel [14]
can be then derived as follows

K(xt, xs) = K(
−−→
SLR(xt, XS),

−−→
SLR(xs, XS)) (3)

whereK(., .) can be any general SVM kernel (considered linear
in the present work) and

−−→
SLR(xt, XS) =




SLR(xt, x1)
...

SLR(xt, xTs)




Likewise, given a set of background speaker utterances XB =

{xb}Tb
b=1, the kernel scoring for a test utterance (i-vector) xt in

the boosting framework is obtained as a weighted linear combi-
nation of the scores obtained from individual classifiers (Si) of
the target speaker ensemble as follows:-

Score(xt, XS , XB) =

T∑

i=1

αiSi(xt, XS , XB) (4)

where T is the size of the ensemble, αi is the weight of the ith

SVM classifier (Si) in the ensemble as calculated in Step 6 of
the DataBoost-UP algorithm, defined as follows.

Si(xt, XS , XB) =
∑

j∈SVS

βi,jK(xt, xj)−
∑

j∈SVB

βi,jK(xt, xj)

(5)

βi,j are the non-zero Lagrange multipliers, xj are a se-
quence of learned support vectors in the target speaker and
background speaker classes whose indices are given by SVS

and SVB , respectively for the ith SVM classifier in the ensem-
ble, di is the bias term and K is the empirical kernel (Eq. 3).

4. Experimental Setup
All experiments were conducted on the NIST-SRE-2003
database [29] (1-side training, 1-side testing). The data consists
of 356 (149 male, 207 female) target speaker utterances (ap-
prox. 2 mins each) enrolled for training and 3500 utterances (15
secs each) for evaluation. A development dataset comprising
selected utterances from SwitchBoard II corpus and NIST-SRE-
2004 was used for UBM construction, total variability modeling
and PLDA.

4.1. Simulation of background and feature extraction

All experiments were conducted under mismatched conditions
with noisy training utterances evaluated against clean test utter-
ances. Four additive noises (i.e., car, factory, pink and white)
collected from the NOISEX-92 database were used for repre-
senting unique background environments. The speech segment
from each of the 356 enrolled speakers was degraded by adding
a specific type of noise at 0 dB and 5 dB, respectively. The
noise level was scaled to maintain the desired SNRs of the re-
constructed speech segments. Eight different sets of noisy train-
ing utterances were simulated (one for each noise at a particular
SNR). Each set was individually used for training and evalua-
tion. An energy-based voiced activity detection [30] was used
to discard non-speech frames from all noisy training utterances.
A 39 component feature vector comprising 13 MFCCs associ-
ated with first and second order delta coefficients was extracted
from short term frames of 20 ms with a frame overlap of 10 ms.

4.2. Total variability modeling

A gender independent UBM of 1024 GMM components, was
built from 20 hrs (10hrs male + 10hrs female) of speech col-
lected from the SwitchBoard II corpus. All training utterances
were subjected to UP-AVR in the boosting framework with pa-
rameters P = 2, R = 3 (empirically determined) as discussed
in Section 3.2. A total variability matrix T [12] of 400 factors
(Eq. 1) was trained using an auxilliary dataset of 3217 utter-
ances from the SwitchBoard II. A WCCN matrix [21] was de-
rived from 400 utterances of the NIST-SRE-2004. All i-vectors
were subjected to WCCN followed by length-normalization
[12]. The dimension of the resultant i-vectors were further re-
duced via PLDA modeling with 150 latent components.

4.3. SVM training and evaluation

An ensemble of speaker-specific SVMs was trained by
DataBoost-UP using the linear LR kernel (Eq. 3) with enroll-
ment and background utterances labelled +1 & -1 respectively.
For each target speaker, 7 enrollment and 1065 background i-
vectors were obtained after UP-AVR as discussed in Section
4.2. The 3500 test utterances were transformed into i-vector
prior to evaluation. Each test utterance was scored against 11
hypothesized speaker models (SVMs) (Eq. 4) from one of the
8 noisy training datasets (see Section 4.1). It was observed that
the proposed boosting algorithm converged within 5 to 7 itera-
tions in average. The true and false scores obtained in each trial
were used to compute the ‘false alarm’ and ‘miss’ error rates, a
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Table 1: Comparison of the effects of UP-AVR and Databoost-UP on the performances of i-vector based SV systems under mismatched
conditions in uniform background environments at 0 dB and 5 dB SNRs

SNR Noise i-vector i-vector + UP-AVR i-vector + DataBoost-UP

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

Car 10.52 0.051 09.49 0.047 08.22 0.037

0 dB Factory 12.33 0.068 11.10 0.055 09.75 0.048

Pink 12.78 0.071 11.34 0.054 10.16 0.047

White 13.39 0.073 12.24 0.055 10.21 0.053

Car 08.31 0.036 07.05 0.028 05.87 0.021

5 dB Factory 10.75 0.057 09.26 0.041 07.14 0.032

Pink 11.47 0.059 10.16 0.044 08.13 0.035

White 12.15 0.063 11.88 0.051 08.76 0.043

Clean 01.75 0.015 01.57 0.013 01.43 0.010
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(c) DataBoost-UP

Figure 1: DET plots of (a) baseline (b) UP-AVR and (c) DataBoost-UP SV systems in uniform background environment. The blue,
red, green and black lines indicate car, factory, pink and white noise. The broken and solid lines indicate 0 dB and 5 dB SNRs.

weighted sum of which was used to determine a Detection Cost
Function (DCF) [29]. The equal error rate (EER) and minimum
DCF value were used as metrics for performance evaluation.

5. Results and Discussion
Table 1 summarizes the performance of the SV systems de-
veloped using (i) i-vectors extracted from full-length utter-
ances (baseline) (ii) multiple i-vectors derived by UP-AVR
and (iii) the proposed framework using DataBoost-UP. Fig-
ure 1 shows the DET plots [31] of the corresponding SV sys-
tems under mismatched conditions. A consistent decrement
in EER and MinDCF values is observed across all noisy en-
vironments for both SNRs. Average relative EER reductions
of 12.48%, 11.92%, 11.34%, 05.41% and 25.61%, 27.25%,
24.81%, 25.83% across both SNRs in car, factory, pink and
white noisy environments are obtained using UP-AVR and
DataBoost-UP algorithms, respectively. It is interesting to ob-
serve that the performance improvements in case of clean en-
vironments are moderate for both UP-AVR and DataBoost-UP.
This supports the fact the boosting strategy is effective in noisy
environments where the SVMs are more susceptible to misclas-
sifications. The only apparent tradeoff for the improved per-
formance is the relatively higher computational costs involved

in the DataBoost-UP algorithm (≈ O(TN3)) compared to the
baseline methods (≈ O(N3)).

6. Conclusion
In this paper we proposed and demonstrated the performance
of a novel boosting algorithm in the total variability modeling
framework for speaker verification under mismatched condi-
tions. The noisy environments were simulated using 4 additive
noises at 2 different SNRs. A prominent improvement in per-
formance accuracy was observed compared to the traditional
i-vector based SV system and i-vectors oversampled by the UP-
AVR algorithm. The work can be extended in future by ex-
ploring the proposed algorithm on the more recent NIST 2012
corpus which comprises speech utterances degraded by larger
number of real-life multi-SNR noises.
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