
Automatic Language Identification using Long Short-Term Memory
Recurrent Neural Networks

Javier Gonzalez-Dominguez1,2, Ignacio Lopez-Moreno1, Haşim Sak1,
Joaquin Gonzalez-Rodriguez2, Pedro J. Moreno1

1Google Inc., New York, USA
2ATVS-Biometric Recognition Group, Universidad Autonoma de Madrid, Madrid, Spain

javier.gonzalez@uam.es, jgd@google.com

Abstract
This work explores the use of Long Short-Term Memory

(LSTM) recurrent neural networks (RNNs) for automatic lan-
guage identification (LID). The use of RNNs is motivated by
their better ability in modeling sequences with respect to feed
forward networks used in previous works. We show that LSTM
RNNs can effectively exploit temporal dependencies in acoustic
data, learning relevant features for language discrimination pur-
poses. The proposed approach is compared to baseline i-vector
and feed forward Deep Neural Network (DNN) systems in the
NIST Language Recognition Evaluation 2009 dataset. We show
LSTM RNNs achieve better performance than our best DNN
system with an order of magnitude fewer parameters. Further,
the combination of the different systems leads to significant per-
formance improvements (up to 28%).

1. Introduction
The problem of automatic language identification (LID) can be
defined as the process of automatically identifying the language
of a given spoken utterance [1]. LID is daily used in several
applications such as multilingual translation systems or emer-
gency call routing, where the response time of a fluent native
operator might be critical [1] [2].

Even though several high level approaches based on phono-
tactic and prosody are used as meaningful complementary
sources of information [3][4][5], nowadays, many state-of-the-
art LID systems still include or rely on acoustic modelling
[6][7]. In particular, guided by the advances on speaker veri-
fication, the use of i-vector extractors as a front-end followed
by diverse classification mechanisms has become the state-of-
the-art in acoustic LID systems [8][9].

In [10] we found Deep feeed forward Neural Networks
(DNNs) to surpass i-vector based approaches when dealing with
very short test utterances (≤3s) and large amount of training
material is available (≥20h per language). Unlike previous
works on using neural networks for LID [11] [12] [13], this
was, to the best of our knowledge, the first time that a DNN
scheme was applied at large scale for LID, and benchmarked
against alternative state-of-the-art approaches.

Long Short-Term Memory (LSTM) recurrent neural net-
works (RNNs) [14, 15, 16] have recently been shown to out-
perform the state of the art DNN systems for acoustic model-
ing in large vocabulary speech recognition [17, 18]. Recurrent
connections and special network units called memory blocks in
the recurrent hidden layer in LSTM RNNs make them a more
powerful tool to model sequence data than feed forward neural
networks and conventional RNNs. The memory blocks contain

memory cells with self-connections storing the temporal state
of the network which changes with the input to the network at
each time step. In addition, they have multiplicative units called
gates to control the flow of information into the memory cell and
out of the cell to the rest of the network. This allows the net-
work to model temporal sequences such as speech signals and
their complex long-range correlations.

In this paper, we propose LSTM RNNs for automatic lan-
guage identification. Our motivation is that LSTM RNNs’ ef-
fectiveness in modeling temporal dependencies in the acoustic
signal can help learning long-range discriminative features over
the input sequence for language identification. To assess the
proposed method’s performance we experiment on the NIST
Language Recognition Evaluation 2009 (LRE’09). We focus
on short test utterances (up to 3s). We show that LSTM RNNs
perform better than feed forward neural networks with an order
of magnitude fewer parameters. Besides, they learn comple-
mentary features to DNNs and we get significant improvements
by combining the scores from DNN and LSTM RNN systems.

The rest of this paper is organized as follows. Section 2
presents the i-vector based baseline system and the feed forward
DNN architecture. Section 3 is devoted to present the LSTM
RNN architecture. The fusion and calibration procedure is pre-
sented in Section 4. The experimental protocol and datasets
used are then described in section 5. Results are discussed in
section 6. Finally, conclusions are presented in Section 7.

2. Baseline Systems
To establish a baseline framework, we built a classical i-vector
based acoustic system and three different DNNs based LID sys-
tems by varying the number of hidden layers. Baseline systems
are summarized below and we refer to [10] for a more detailed
description.

2.1. i-vector Based LID Systems

The i-vector system follows the standard procedure described
in [8]. It is based on an Universal Background Model consist-
ing of 1024 Gaussian components, trained on 39 dimensional
PLP coefficients (13 + ∆ + ∆∆). From Baum-Welch statistics
computed over this UBM, we derived a Total Variability (TV)
space of 400 dimensions. Our TV model is trained using a PCA
followed by 10 EM iterations.

We adopted a classical classification scheme based on
Linear Discriminant Analysis followed by Cosine Distance
(LDA CS). Thus, the similarity measure (score) for a given test
utterance i-vector w, and the mean i-vector wL of the language

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

2155

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
01

4-
48

3



Figure 1: DNN network topology

L is given by

Sw,wL =
(Atw)(AtwL)√

(Atw)(Atw)
√

(AtwL)(AtwL)
(1)

being A is the LDA matrix.
In [10] we provided a more detailed comparison between

state-of-the-art i-vector and DNN -based LID system over the
Google 5M dataset. In this work we opted for a LDA CS base-
line as it is a widely used technique and offers comparable re-
sults with the DNN model on the public LRE’09 dataset [10].

The total number of parameters of the i-vector system ac-
counts for the TV and LDA matrices. It is given by NFD +
D(NL − 1), being N , F , D and NL the number of Gaussians
components (1024), the feature dimension (39) the i-vector di-
mensions (400) and the number of languages (8). In our model,
this makes a total of ∼16M of parameters.

2.2. DNN-based LID System

The DNN architecture used in this work is a fully connected
feed-forward neural network [19]. The hidden layers contain
units with rectified linear activation functions. The output is
configured as a softmax layer with a cross-entropy cost func-
tion. Each hidden layer contains h (2560) units while the out-
put layer dimension (s) corresponds to the number of target lan-
guages (NL) plus one extra output for the out-of-set (oos) lan-
guages.

The DNN works at frame level, using the same features
as the baseline systems described above (39 PLP). The input
layer is fed with 21 frames formed by stacking the current pro-
cessed frame and its±10 left-right context. Therefore, there are
819 (21 × 39) visible units, v. The number of total weights w,
considering Nhl hidden layers can be then easily computed as
w = vh+ (Nhl−1)hh+ sh. Figure 1 represents the complete
topology of the network.

Regarding the training parameters, we used asynchronous
stochastic gradient descent within the DistBelief framework
[20]. We also fixed the learning rate and minibatch size to 1e-03
and 200 samples.

in
pu

t

g cell h

it

ft

ct

ot

ou
tp

ut

xt rt

rt−1

yt

LSTM memory blocks

Figure 2: Long Short-Term Memory recurrent neural network
architecture. A single memory block is shown for clarity.

Finally, we computed the output scores at utterance level
by respectively averaging the log of the softmax output of all its
frames (i.e. log of the predicted posterior probabilities).

3. Long Short-Term Memory RNNs
The modern LSTM RNN architecture [14, 15, 16] is shown
in Figure 2. The LSTM contains special units called memory
blocks in the recurrent hidden layer. The memory blocks con-
tain memory cells with self-connections storing the temporal
state of the network in addition to special multiplicative units
called gates to control the flow of information. The input gate
controls the flow of input activations into the memory cell. The
output gate controls the output flow of cell activations into the
rest of the network. The forget gate scales the internal state
of the cell before adding it as input to the cell through self-
recurrent connection of the cell, therefore adaptively forgetting
or resetting the cell’s memory. In addition, the LSTM RNN ar-
chitecture contains peephole connections from its internal cells
to the gates in the same cell to learn precise timing of the out-
puts [16].

With this architecture, LSTM RNNs compute a mapping
from an input sequence x = (x1, ..., xT ) to an output sequence
y = (y1, ..., yT ). They calculate the activations for network
units using the following equations iteratively from the time
step t = 1 to T :

it = σ(Wixxt +Wirrt−1 +Wicct−1 + bi) (2)
ft = σ(Wfxxt +Wfrrt−1 +Wfcct−1 + bf ) (3)

ct = ft � ct−1 + it � tanh(Wcxxt +Wcrrt−1 + bc) (4)
ot = σ(Woxxt +Worrt−1 +Wocct + bo) (5)

rt = ot � tanh(ct) (6)
yt = φ(Wyrrt + by) (7)

where the W terms denote weight matrices (e.g. Wix

is the matrix of weights from the input gate to the input),
Wic,Wfc,Woc are diagonal weight matrices for peephole con-
nections, the b terms denote bias vectors (bi is the input gate
bias vector), σ is the logistic sigmoid function, and i, f , o and
c are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the cell
output activation vector r, � is the element-wise product of the
vectors, tanh is the hyperbolic tangent activation function for
cell inputs and cell outputs, and φ is the softmax output activa-
tion function for the LSTM RNN models used in this paper.

2156



The LSTM RNN architecture that we used in this paper
contains 512 memory cells. Different than DNNs, the input to
the network is just 39-dimensional PLP features calculated at a
given time step with no stacking of acoustic frames. The total
number of parameters N ignoring the biases can be calculated
asN = ni×nc×4+nc×nc×4+nc×no+nc×3, where nc

is the number of memory cells, ni is the number of input units,
and no is the number of output units.

We trained the LSTM RNN model using asynchronous
stochastic gradient descent (ASGD) and the truncated back-
propagation through time (BPTT) learning algorithm [21]
within a distributed training framework [18, 22]. Activations
are forward propagated for a fixed step time of 20 over a sub-
sequence of an input utterance, the cross entropy gradients are
computed for this subsequence and backpropagated to its start.
For better randomization of gradients in ASGD and stability of
training, we split the training utterances into random chunks of
length between 2.5 and 3 seconds. We also set the same target
language id sparsely for a chunk, 1 in every 5 frames for the
experiments in this paper. The errors are only calculated for
the frames that we set a target language id. We used 100 ma-
chines for distributed training and in each machine 4 concurrent
threads each processing a batch of 4 subsequences. We used an
exponentially decaying learning rate of 1e-04. For scoring, we
computed an utterance level score for each target language by
averaging the log of the softmax outputs for that target language
of all the frames in an utterance.

4. Fusion and Calibration
We used multiclass logistic regression in order to combine and
calibrate the output of individual LID systems [23]. Let skL(xt)
be the log-likelihood score for the recognizer k and language L
for utterance xt. We derive combined scores as

ŝL(xt) =

K∑

k=1

αkskL(xt) + βL (8)

Note that this is just a generic version of the product rule combi-
nation, parametrized by α and β. Defining a multiclass logistic
regression model for the class posterior as

P (L|ŝL(xt)) =
exp(ŝL(xt))∑
l exp(ŝl(xt))

(9)

we found α and β to maximize the global log-posterior in a
held-out dataset

Q(α1, ..., αK , β1, ...βN ) =

T∑

t=1

NL∑

l=1

δtlP (L|ŝl(xt)) (10)

being

δtL

{
wL, if xt ∈ L
0, otherwise.

(11)

where wl (l = 1, ..., NL) is a weight vector which normalizes
the number of samples for every language in the development
set (typically, wL = 1 if an equal number of samples per lan-
guage is used). This fusion and calibration procedure was con-
ducted through the FoCal toolkit [24].

5. Datasets and Evaluation Metrics
5.1. The NIST Language Recognition Evaluation dataset

The LRE evaluation in 2009 included data coming from two dif-
ferent audio sources. Besides Conversational Telephone Speech
(CTS), used in the previous evaluations, telephone speech from
broadcast news was used for both training and test purposes.
Broadcast data were obtained via an automatic acquisition sys-
tem from “Voice of America” news (VOA) where telephone and
non-telephone speech is mixed. Up to 2TB of 8KHz raw data
containing radio broadcast speech, with the corresponding lan-
guage and audio source labels were distributed to participants;
and a total of 40 languages (23 target and 17 out of set) were
included.

Due to the large disparity on training material for every lan-
guage (from ∼10 to ∼950 hours) and also, for the sake of clar-
ity, we selected 8 representative languages for which up to 200
hours of audio are available: US English (en), Spanish (es), Dari
(fa), French (fr), Pashto (ps), Russian (ru), Urdu (ur), Chinese
Mandarin (zh). Further, to avoid misleading result interpreta-
tion due to the unbalanced mix of CTS and VOA, all the data
considered in this dataset belongs to VOA.

For evaluation, we used a subset of the official NIST LRE
2009 3s condition evaluation set (as for training, we also dis-
carded CTS test segments), yielding a total of 2916 test seg-
ments of the 8 selected languages. That makes a total of 23328
trials.

5.2. Evaluation metrics

In order to assess the performance, two different metrics were
used. As the main error measure to evaluate the capabilities
of one-vs.-all language detection, we use Cavg (average cost)
as defined in the LRE 2009 [25][26] evaluation plan. Cavg is
a measure of the cost of taking bad decisions, and therefore it
considers not only discrimination, but also the ability of setting
optimal thresholds (i. e. calibration). Further, the well-known
metric Equal Error Rate (EER) is used to show the performance,
when considering only scores of each individual language. De-
tailed information can be found in the LRE’09 evaluation plan
[25].

6. Experimental Results
6.1. Standalone systems performance

In [10] we found DNNs to outperform several different i-vector
based systems when dealing with short test durations and large
amount of training data (>20h per language). We followed up
those experiments by first exploring the use of LSTM RNNs as
a natural approach to exploit useful temporal information for
LID; and second exploring the effect of varying the number of
hidden layers in the DNN architecture.

Table 1 summarizes the results obtained in terms of EER
(per language and on average) and Cavg . At a first glance,
we highlight two major results. First, the proposed LSTM
RNN architecture better performance than our best DNN sys-
tem with 4 hidden layers. This fact is particularly interesting
taking into account that the proposed LSTM RNN contains 20
times fewer parameters (see Size column in Table 1). Addition-
ally, note from the Cavg values that the scores produced by the
LSTM RNN model are better calibrated than those produced
by DNN or i-vector systems. Second, both neural networks ap-
proaches (DNNs and LSTM RNN) surpass the i-vector system
performance by ∼47% and ∼52% in EER and Cavg respec-

2157



Equal Error Rate (EER in %)

Size en es fa fr ps ru ur zh EERavg Cavg

i-vector LDA CS ∼16M 17.22 10.92 20.03 15.30 19.98 14.87 18.74 10.09 15.89 0.1968
DNN 2 layers ∼8M 12.66 5.04 19.67 8.60 17.84 8.75 14.78 5.54 11.61 0.1727
DNN 4 layers ∼21M 8.53 3.58 16.19 5.82 15.42 6.38 11.24 3.16 8.79 0.1292
DNN 8 layers ∼48M 8.65 3.74 17.22 7.53 16.01 5.59 13.10 4.82 9.58 0.1376
LSTM RNN ∼1M 5.81 3.23 17.46 6.42 12.52 6.16 9.91 5.30 8.35 0.0944

Fusion1 ∼22M 5.19 2.16 13.67 4.12 10.82 3.98 8.20 3.91 6.51 0.0693
Fusion2 ∼38M 5.34 2.09 12.80 4.24 9.83 4.39 7.62 3.76 6.26 0.0654
Fusion3 ∼94M 5.42 2.95 12.01 4.40 10.98 4.01 8.20 3.76 6.47 0.0649

Table 1: Systems performance per language and average metrics on LRE’09 subset (3s test segments)

tively. This result confirms the ability of the proposed neural
networks architectures to exploit discriminative information in
large datasets.

A further analysis regarding the optimal depth of the DNN
system shows that the 4-hidden layer topology outperforms the
2-hidden layers one and more interestingly, the 8-hidden layers
topology. In particular, the DNN 4 layers achieved, in average,
∼8% better EER than the DNN 8 layers despite of using just
half of the parameters.

6.2. Systems combination performance

In this section we aim to analyze the score correlation among
LSTM, DNN and i-vector systems and in particular, how that
can lead to a good combination strategy. For this purpose de-
fined three different groups of systems and combined them us-
ing the multiclass logistic regression framework presented in
Section 4. The three groups defined bellow represent various
tradeoffs between performance and number of parameters.

• Fusion1: this group is composed by the DNN 4 layers
and LSTM RNN systems. This combination strategy al-
low us to evaluate the fusion capabilities of the proposed
DNN and LSTM RNN architectures.

• Fusion2: this group incorporates the i-vector system to
the compound Fusion1 system. It analyzes the com-
plementarity between neural networks and a classical i-
vector approach.

• Fusion3: this group includes DNN 2 layers and
DNN 8 layers to the systems in Fusion2 to explore a
global fusion for all the developed systems.

Fusion results are collected in Table 1. As observed, the com-
bination of the best DNN system and LSTM (Fusion1) gets a
>25% gain of performance in terms ofCavg with respect to our
best individual LSTM RNN system. This fact shows that de-
spite of the presumable similarity of the approaches (both neural
nets trained via ASGD), they produce uncorrelated scores that
can be successfully combined. Further improvements achieved
by Fusion2 highlights the degree of complementary between i-
vectors, DNN and LSTM RNN systems. This result is partic-
ularly interesting taking into account the gap of performance
between Fusion1 and i-vector LDA CS. Finally, we present the
fusion of all the developed systems in Fusion3. As expected,
different DNN topologies exploit correlated information, which
turns into a not significant improvement over Fusion2.

7. Conclusions
In this work, we proposed a new approach to Automatic Lan-
guage Identification (LID) based on Long Short Term Memory
(LSTM) Recurrent Neural Networks (RNNs). Motivated by the
recent success of Deep Neural Networks (DNNs) for LID, we
explored LSTM RNNs as a natural architecture to include tem-
poral contextual information within a neural network system.

We compared the proposed system with an i-vector based
system and different configurations of feed forward DNNs. Re-
sults on NIST LRE 2009 (8 languages selected and 3s condi-
tion) show that LSTM RNN architecture achieves better perfor-
mance than our best 4 layers DNN system using 20 times fewer
parameters (∼1M vs ∼21M ). In addition, we found LSTM
RNN scores to be better calibrated than those produced by the
i-vector or the DNN systems.

This work also shows that both LSTM RNN and DNN sys-
tems remarkably surpass the performance of the individual i-
vector system. Furthermore, both neural network approaches
can be combined leading to a improvement of >25% in terms
ofCavg with respect to our best individual LSTM RNN system.
Our best combined system also incorporates the scores from the
i-vector system leading to a total improvement of 28%.

8. References
[1] Y. Muthusamy, E. Barnard, and R. Cole, “Reviewing au-

tomatic language identification,” Signal Processing Mag-
azine, IEEE, vol. 11, no. 4, pp. 33–41, 1994.

[2] E. Ambikairajah, H. Li, L. Wang, B. Yin, and V. Sethu,
“Language identification: A tutorial,” Circuits and Sys-
tems Magazine, IEEE, vol. 11, no. 2, pp. 82–108, 2011.

[3] M. Zissman, “Comparison of Four Approaches to Au-
tomatic Language Identification of Telephone Speech,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 4,
no. 1, pp. 31–44, 1996.

[4] L. Ferrer, N. Scheffer, and E. Shriberg, “A Comparison of
Approaches for Modeling Prosodic Features in Speaker
Recognition,” in International Conference on Acoustics,
Speech, and Signal Processing, 2010, pp. 4414–4417.

[5] D. Martinez, E. Lleida, A. Ortega, and A. Miguel,
“Prosodic features and formant modeling for an ivector-
based language recognition system,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, 2013, pp. 6847–6851.

[6] P. Torres-Carrasquillo, E. Singer, T. Gleason, A. Mc-
Cree, D. Reynolds, F. Richardson, and D. Sturim, “The

2158



MITLL NIST LRE 2009 Language Recognition System,”
in Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, 2010, pp. 4994–
4997.

[7] J. Gonzalez-Dominguez, I. Lopez-Moreno, J. Franco-
Pedroso, D. Ramos, D. Toledano, and J. Gonzalez-
Rodriguez, “Multilevel and Session Variability Compen-
sated Language Recognition: ATVS-UAM Systems at
NIST LRE 2009,” Selected Topics in Signal Processing,
IEEE Journal of, vol. 4, no. 6, pp. 1084–1093, 2010.

[8] N. Dehak, P. A. Torres-Carrasquillo, D. A. Reynolds, and
R. Dehak, “Language Recognition via i-vectors and Di-
mensionality Reduction.” in INTERSPEECH. ISCA,
2011, pp. 857–860.

[9] D. Martinez, O. Plchot, L. Burget, O. Glembek, and
P. Matejka, “Language Recognition in iVectors Space.” in
INTERSPEECH. ISCA, 2011, pp. 861–864.

[10] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot,
D. Martinez, J. Gonzalez-Rodriguez, and P. Moreno, “Au-
tomatic Language Identification using Deep Neural Net-
works,” Acoustics, Speech, and Signal Processing, IEEE
International Conference on, to appear., 2014.

[11] R. Cole, J. Inouye, Y. Muthusamy, and M. Gopalakrish-
nan, “Language identification with neural networks: a fea-
sibility study,” in Communications, Computers and Signal
Processing, 1989. Conference Proceeding., IEEE Pacific
Rim Conference on, 1989, pp. 525–529.

[12] M. Leena, K. Srinivasa Rao, and B. Yegnanarayana, “Neu-
ral network classifiers for language identification using
phonotactic and prosodic features,” in Intelligent Sensing
and Information Processing, 2005. Proceedings of 2005
International Conference on, 2005, pp. 404–408.

[13] G. Montavon, “Deep learning for spoken language identi-
fication,” in NIPS workshop on Deep Learning for Speech
Recognition and Related Applications, 2009.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, Nov. 1997.

[15] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: Continual prediction with LSTM,” Neural Compu-
tation, vol. 12, no. 10, pp. 2451–2471, 2000.

[16] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber,
“Learning precise timing with LSTM recurrent networks,”
Journal of Machine Learning Research, vol. 3, pp. 115–
143, Mar. 2003.

[17] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech
recognition with deep bidirectional LSTM,” in Automatic
Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on. IEEE, 2013, pp. 273–278.

[18] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term
Memory Based Recurrent Neural Network Architectures
for Large Vocabulary Speech Recognition,” ArXiv e-
prints, Feb. 2014.

[19] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Ap-
plication of Pretrained Deep Neural Networks to Large
Vocabulary speech recognition,” in Proceedings of Inter-
speech 2012, 2012.

[20] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang,

and A. Ng, “Large Scale Distributed Deep Networks,” in
Advances in Neural Information Processing Systems 25,
P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Wein-
berger, Eds., 2012, pp. 1232–1240.

[21] R. J. Williams and J. Peng, “An efficient gradient-based
algorithm for online training of recurrent network trajec-
tories,” Neural Computation, vol. 2, pp. 490–501, 1990.

[22] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term
Memory Recurrent Neural Network Architectures for
Large Scale Acoustic Modeling,” in submitted to INTER-
SPEECH 2014, 2014.

[23] N. Brümmer and D. van Leeuwen, “On Calibration of
Language Recognition Scores,” in Proc. of Odyssey, San
Juan, Puerto Rico, 2006.

[24] N. Brümmer. Fusion and calibration toolkit
[software package]. [Online]. Available: ,
http://sites.google.com/site/nikobrummer/focal.

[25] NIST, “The 2009 NIST SLR Evalua-
tion Plan,” www.itl.nist.gov/iad/mig/tests/lre/
2009/LRE09 EvalPlan v6.pdf, 2009.

[26] N. Brümmer, “Measuring, Refining and Calibrating
Speaker and Language Information Extracted from
Speech,” Ph.D. dissertation, Department of Electrical
and Electronic Engineering, University of Stellenbosch,,
2010.

2159


