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Abstract
The speech signal is a combination of attributes that contain

information of the speaker, channel and noise. Conventional
speaker verification systems train a single generic model for all
cases, and handle all variations from these attributes either by
factor analysis, or by not considering the variations explicitly.

We propose a new methodology to partition the data space
according to these factors and train separate models for each
partition. The partitions may be obtained according to any at-
tribute. We train models for the partitions discriminatively to
maximize the separation between them. For classification we
suggest multiple ways of combining scores from partitions. Ex-
periments performed on the database NIST2008 show that our
method improves the performance with respect to conventional
methods when partitions are formed according to speakers. On
noisy speech, partitions by noise result in the best performance.
Index Terms: Speaker verification, minimum verification error,
discriminative training, robustness, clustering.

1. Introduction
Of the variety of biometric signals that can be used for iden-
tification of human subjects, speech is probably the most con-
venient. It is the most natural form of human communication,
and can be used easily to communicate with remote applica-
tions over the network and the telephone, the infrastructure for
which is ubiquitous. As a result, not only is the number of sub-
jects who use speech to interact with machines increasing, the
variety of recording conditions under which they do so is also
becoming more unconstrained and diverse. It has therefore be-
come important to develop robust voice-based biometric tech-
niques that can operate on speech that has been recorded under
diverse, and noisy conditions.

In this research we specifically consider Speaker Verifica-
tion (SV), but the principles we present can also be used in
speaker identification. In speaker verification, an identity is
claimed for the speaker. The speech recording is used to con-
firm if it is true or not.

The problematic effects of noise and recording conditions
on speech applications in general have been known for a long
time, and a large number of solutions have been proposed to
deal with them, such as denoising the signal [1], reducing the
noise in speech feature vectors [2, 3, 4, 5, 6], or developing
robust feature representations that are naturally less sensitive to
noise [7].

In addition, speaker verification systems have also gener-
ally dealt with recording noise and channel variations by di-
rectly considering them in the pattern recognition paradigms
they employ.

Traditionally, speaker verification is performed through a
likelihood ratio test: the likelihood of the recording computed

from a “target” model, representing the distribution of feature
vectors from the claimed speaker, is compared to the likelihood
obtained from a “background” model, representing the distri-
bution of data from possible imposters. Robustness to noise
and recording channel variations is obtained from the manner
in which these distributions are learned. Both distributions are
usually characterized by Gaussian mixture models (GMM). The
background model is usually learned from data from a large
number of speakers, collected over diverse conditions. The tar-
get model is obtained by adapting the background model to
training data from the target speaker [8, 9, 10, 11]. In order
to deal with noise and recording channel variations the model
parameters are decomposed via factor analysis into factors that
correspond to speaker identity, channel and noise [12]. Chan-
nel and noise factors are marginalized out of the computation
when performing the actual likelihood ratio test [13, 14] to ver-
ify a test recording. Alternately, the factor analysis may be
employed directly to eliminate undesired factors from the fea-
tures computed from the speech signal themselves [15]. Other
training strategies for enhancing robustness to noise and chan-
nel variations have also been proposed. For instance [16] shows
that a model training scheme that minimizes the area under the
detection-error-tradeoff curve obtained with the models natu-
rally also enhances the robustness of the system to noise in the
test data.

In this paper we propose an alternate framework for enhanc-
ing the robustness of the system to variations induced by differ-
ent phenomena. Speaker verification systems, like all statistical
pattern classifiers, work best when the statistics of the test data
match those represented by the distributions in the classifier.
Considering this fact, instead of training a single background
model to represent all possible imposter signals, we partition
the space of signals according to the specific factor such as noise
that introduces extraneous variations. A separate background
model is trained for each of these partitions. Corresponding to
each partition we train a separate target model to distinguish
between signals from the target speaker and the imposter data
within the partition.

In order to verify the speaker in a new recording, we must
first identify the partition against which to evaluate it. The like-
lihood test may then be performed using the target and back-
ground models for that partition. If the characteristic of the
recording, in terms of the factor by which the partition is af-
fected, is known a priori, this may be used to select the parti-
tion. Otherwise, the appropriate partition to use must be chosen
according to some other criterion. Empirically, we find that se-
lecting the partition that most favours acceptance of the speaker
results in the best overall performance.

Since we consider an ensemble of background models, we
will refer to the proposed method as the ensemble model ap-
proach for speaker verification.

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

2455

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
01

3-
40

9



The proposed method is related in principle to similar meth-
ods have previously been proposed in the literature to decompse
the space of speech signals for improved speech recognition un-
der adverse conditions, e.g. [17]. The use of multiple back-
ground models for speaker verification has also been explored
in [18, 19], who attempt to segregate speakers in terms of vocal
tract length, as a natural extension of gender-dependent model-
ing for verification. However, unlike these, in our scheme par-
titions are created according to any effect that introduces vari-
ations in the signal that we wish to compensate for. So while
these could indeed be formed based on intrinsic factors such as
speaker variations as in [20, 19], they may also be formed ac-
cording to extrinsic factors such as channel or noise. Further,
we attempt explicitly to make our background models specific
to the partition they represent, by training them discriminatively
to not only represent their own partition, but also to discriminate
against other partitions.

The partitions, in turn may be obtained in many ways.
Where the value of the factors by which we are partitioning the
signals (e.g. the SNR of the signal) are known a priori, parti-
tions may be obtained based only these values. In the absence
of such information, partitions may be obtained by clustering
individual recordings using methods such as k-means. Experi-
ments show that the proposed method can result in significantly
better performance than other conventional speaker verification
techniques when the partitions are formed by speaker, and sig-
nificantly more robust performance when partitions are formed
according to noise conditions in the data. Moreover, the best re-
sults are obtained when partitions are based on a priori informa-
tion about factor being considered. We note that the proposed
technique does not exclude the possiblity of also including other
noise-compensation techniques including many of those men-
tioned earlier, although we have not explicitly considered these
in this paper. The interaction between these and the proposed
method will be investigated in future work.

The rest of the paper is as follows. In Section 2 we outline
the general problem of SV and the state of the art solution. In
Section 3 we describe our ensemble model of paritioning the
signal space for speaker verfication. Section 4 explains how we
adapt the approach for partitioning the space by speaker and by
noise. Section 5 shows some experiments and results. Finally,
Section 6 presents our conclusions and discusses directions for
future work.

2. Speaker Verification
The objective of speaker verification is to accurately verify if a
recorded spoken phrase χ was indeed uttered by the registered
speaker S that the recording is claimed to be from. This is gen-
erally performed through a likelihood ratio test. A parametric
model with parameters ΛS is defined for the distribution of data
from the target speaker S. A background model with parame-
ters λŜ is specified for the class of recordings that do not belong
to the target speaker. The actual likelihood-ratio is as follows:

θS (χ) = log (P (χ; ΛS))− log (P (χ; ΛŜ))
accept speaker if θS(χ) > τ
reject speaker otherwise

(1)

In order to compute P (χ; ΛS) and P (χ; ΛŜ), each record-
ing χ is transformed into a sequence of feature vectors χ =
X1, X2, · · · , XT , typically mel-frequency cepstral coefficient
vectors, augmented by their delta (velocity) and double delta
(acceleration) coefficients. The vectors Xi are assumed to
be IID and have a Gaussian mixture distribution given by,

P (X; ΛC) =
∑
k w

C
k N (X;µ

C
k ,Σ

C , k), where C is either S
or Ŝ, and wCk , µ

C
k and ΣCk are the mixture weight, mean and

covariance (usually assumed to be a diagonal matrix) of the
kth Gaussian in the mixture, i.e. ΛC = {wCk , µCk ,ΣCk ∀k}.
The likelihood of the complete recording χ is computed as
P (χ; ΛC) =

∏
t P (Xt; ΛC).

Most commonly, the background model is a single, usually
gender-specific “universal background model” trained from a
large collection of recordings from many speakers. Alternately,
a separate model may be trained for each of a set of “cohort”
speakers who are chosen to provide the best contrast to the tar-
get (registered) speaker. In this case the likelihoods computed
using the multiple cohort models must be combined [21, 22, 23]
to produce the overall likelihood score for the background in
Equation 1.

The target model ΛS must be trained from example record-
ings of the target speaker. Typially, the amount of data available
to compute the target speaker models is small. So, the back-
ground model is adapted to the target speaker by through MAP
(maximum a posteriori) adaptation [8] to obtain target models.
When noise or recording channel mismatches are expected be-
tween test and enrollment data for the speaker, the state of the
art uses various forms of factor analysis (JFA) [9, 10] to train
ΛS . This approach decomposes the parameters of the distri-
bution into two sets of factors – one representing the speaker
and the second representing extraneous factors. The extrane-
ous factors, which contain no information about the speaker,
are marginalized out when performing the likelihood ratio test.

3. Ensemble Model for Robust Verification
We now describe our proposed variation to the basic likelihood-
ratio test based framework described above. Instead of estimat-
ing a general background model from all available data, we par-
tition the space of background signals according to a variation-
inducing factor we wish to account for. We then train a sepa-
rate specific background model for each of the partitions, and
corresponding to each of the background models we train a tar-
get model for the speaker. When a new recording arrives, we
must choose the appropriate partition, and use the correspond-
ing background and target models for the likelihood ratio test.
Since the approach effectively employs an ensemble of back-
ground models, we refer to it as the Ensemble model approach.

Below we outline our procedure for training background
models for each of the steps of our procedure.

We begin by assuming that we have a large collection of
recordings from which to train the background models. We
assume that the space of signals is partitioned into P non-
overlapping regions Ω1,Ω2, · · · ,ΩP , such that together these
partitions cover the entire space. Correspondingly we assume
that the recordings are clustered into P groups, each corre-
sponding to signals that fall into one of these partitions. We de-
fer the description of exactly how these partitions are obtained
until the next section. For now, we will assume that these are
available.

3.1. Training the Model Ensemble

Corresponding to each of the partitions Ω1, · · · ,ΩP we train a
separate partition specific background model. All background
models are Gaussian mixtures. In principle these can be trained
separately for each partition using the Expectation Maximiza-
tion algorithm. However, we require each of the background
models to be highly specific to the partition they represent, and
not generalize to other partitions. In order to do so, we train
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all of them together using the following discriminative training
procedure [17].

Let ΛC represent the model for a partition ΩC . Let χC
represent all (training) recordings assigned to ΩC . For any par-
tition ΩC , let ΩC̄ =

⋃
C′ 6=C ΩC′ represent the complement of

ΩC , i.e. the union of all partitions that are not ΩC .
Let g(X; ΛC) = logP (X; ΛC) represent the log-

likelihood of any recording X computed with the distribution
for partition ΩC . We can now define d (X,ΩC), a misclassifi-
cation measure for how likely it is that a dataX ∈ χC from ΩC
will be misclassified as belonging to ΩC̄ as

d (X,ΩC) = −g (X; ΛC) +G (X,ΩC̄) , (2)

G (X,ΛC̄) represents the combined score obtained from the
models for partitions in ΩC̄ .

G (X,ΩC̄) = log

{
1

|ΩC̄ |
∑

C′:ΩC′∈ΩC̄

exp [ηg (X,ΛC′)]

} 1
η

.

(3)
where |ΩC̄ | is the number of partitions included in ΩC̄ , and η
is a positive parameter. Now, we can define a new objective
function for discriminative training of ΛC . This function takes
the of the form,

`(ΛC) =
1

|χC |
∑

X∈χC

1

1 + exp [−γ (d (X,ΩC) + θ)]
(4)

where |χC | represents the number of recordings in χC , and
γ and θ are control parameters. Finally, the objective func-
tion in Equation 4 can be optimized by applying the follow-
ing generalized probabilistic descent (GPD) update rule for ΛC :
Λt+1
C = ΛtC − ε∇`(ΛC)|Λt

C
.

Since all background models are GMMs, ΛC =
{wCk , µCk ,ΣCk }, where wCk , µCk and ΣCk are the mixture weight,
mean and covariance matrix of the k-th Gaussian of the GMM
for ΛC . To obtain the update rules for these individual parame-
ters, ∂`(ΛC)

∂wC
k

, ∂`(ΛC)

∂µC
k

and ∂`(ΛC)

∂ΣC
k

must respectively be plugged

in for∇`(ΛC) in the update rule of Equation 3.1.
Once background models ΛC are obtained for all partitions,

we can also train partition-specific target-speaker models, ΛCS
by fixing the background model ΛC and using the same dis-
criminative approach as above to train ΛCS .

3.2. Scoring for classification

Given {ΛC1 ,Λ
C1
S }, {ΛC2 ,Λ

C2
S }, · · · {ΛCP ,ΛCPS }, the set of

background models for all P partitions and their corresponding
partition-specific target speaker models for any claimed speaker
S, we can compute the score θS(X) to be employed in the like-
lihood ratio test for any recording X in one of several ways.
Let θSC(X) = logP (X|ΛCS )− logP (X|ΛC) be the likelihood
ratio computed in the log domain from the models for partition
ΩC . The options for obtaining the final score θS(X) are:
a) Partition Selection: We first assign the recording to the
most likely partition: Ĉ(X) = arg maxC logP (X|ΛC). We
then compute the score from the assigned partition: θS(X) =
θS
Ĉ(X)

. This is a conservative score that selects the partition
with signals most likely to be confused with the target speaker.
b) A priori: If the correct partition ΩC for X is known a priori,
then we can simply set θS(X) = θSC(X).
c) Best score: We select the largest score: θS(X) =
maxC θ

S
C(X)

d) Combination: Here we simply combine the scores from the
different partitions: θS(X) =

∑
C w

S
Cθ

S
C(X). In our work

we trained an SVM to classify the speaker; in this case wSC are
simply the weights assigned by the SVM. This is equivalent to
learning the weights discriminatively.

3.3. Finding the partitions

We now return to the problem of how to obtain the partitions
Ω1, · · · ,ΩP of signal space, in the first place.

3.3.1. Supervised

When a priori knowledge of the factors by which we wish to
partition the space is available for the background-model train-
ing data, it may be used to obtain the partitions. Below we
consider two mechanisms: partition by noise and partition by
speaker. Partitions may similarly be obtained by other factors
such as channel variations. Hierarchical partitioning strategies
that consider multiple factors concurrently may also be used.
Environment-based partitions: Here we partition the space of
signals by noise in them. In this paper we assume that parti-
tions are formed based on the SNR of signals. We divide the
range of all possible SNR values into P intervals. Each in-
terval represents a partition of the signal space. Let SNRCmin
and SNRCmax represent the minimum and maximum SNR as-
sociated with partition ΩC . A signal X with SNR SNRX is
assigned to a partition C such that SNRCmin < SNRX ≤
SNRCmax. Note that partitions may also be formed based on
noise type, or other known characteristics of the noise. In this
paper, however, we have only considered SNR.
Speaker Partitions: When speaker identity is known for all
recordings in the training set, partitions are obtained by clus-
tering them by speaker. We first compute a universal back-
ground model (UBM) from unpartitioned data. We then use
an agglomerative clustering procedure to cluster speakers. Ini-
tially each speaker forms their own cluster. At each stage of the
clustering, the UBM is adapted via MAP adaptation to learn
a model ΛC for each new cluster C. The distance between
any two clusters is the empirical cross entropy: d(C1, C2) =

1
|χC1

| log
P (χC1

;ΛC1
)

P (χC1
;ΛC2

)
+ 1

|χC2
| log

P (χC2
;ΛC2

)

P (χC2
;ΛC1

)
, where χCi is

the set of all recordings in cluster Ci. Agglomerative cluster-
ing iteratively merges the closest clusters until the desired num-
ber of clusters (and consequently, partitions) is obtained. Other
clustering mechanisms may also be employed.

3.3.2. Unsupervised

When a priori knowledge about the training recordings is un-
available, partitions may be formed by clustering them using
unsupervised methods, e.g. k-means. The factor by which par-
titions are formed can be controlled by using an appropriate dis-
tance function. Generic clustering based on Euclidean distances
or likelihoods will cluster the data by the dominant factor.

4. Experiments and Results
We employed the NIST Speaker Evaluation 2004, 2005, 2010
and 2008 database [24] to complete this study. We followed the
evaluation rules (e.g. not considering subjects as imposters for
other subjects). 49-dimensional feature vectors, including delta
and double-delta terms, were extracted from the audio using a
25ms analysis window with a 10ms frame shift. We included a
frame removal criterion to eliminate low energy frames that do
not provide information about the identity of the person.
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Condition EER minDCF
Baseline MAP 16.9 6.9
Baseline JFA 15.2 6.3

Baseline MVE 16.3 6.5
4-clusters 8-clusters 16-clusters

Condition A B C D A B C D A B C D
k-means 16.2 15.5 17.1 14.9 15.2 13.8 16.0 13.2 14.8 13.2 15.4 12.5
minDCF 6.45 6.35 6.65 6.23 6.28 5.85 6.37 5.74 6.10 5.32 6.36 5.71

k-B 14.9 14.4 15.4 13.7 13.5 11.9 13.9 11.3 12.1 10.9 12.8 9.5
minDCF 6.24 5.93 6.34 5.67 5.77 5.58 5.92 5.21 5.61 5.08 5.62 4.83

Table 1: EER and minDCF for different clusters on clean condition (speaker ensemble).
5c-mve 5c-map 5c-jfa

Condition A B C D A B C D A B C D
Baseline 28.3 28.6 25.0
minDCF 15.32 15.60 13.23
k-means 27.0 24.1 27.7 23.1 28.3 25.8 29.5 24.2 26.0 25.1 26.8 24.5
minDCF 14.21 10.48 14.34 8.52 16.89 13.48 17.43 10.57 13.70 13.22 14.17 10.66

k-B 23.7 22.2 24.4 20.9 25.2 23.4 26.4 22.3 24.8 24.2 25.2 23.7
minDCF 9.21 8.35 10.59 7.78 13.34 8.97 13.68 8.45 9.35 9.16 13.28 9.32

Table 2: EER and minDCF for different clusters on a noisy task (babble noise).

4.1. Experiment Setup
We conducted two experiments, one clean data and the sec-
ond on noise-corrupted data. For all experiments, we used 100
male registered users chosen randomly from the NIST2008 SRE
database as targets. Following NIST2008 Evaluation rules, the
probability of being a target, Ptarget, is 0.01 and the probabil-
ity of being a impostor, Pimpostor , is 0.99 in this data set. For
the noise condition experiments, babble noise, extracted from
the Aurora 2 database, was added to the training and test files
at different SNRS: 0,5,10,15 and 20 dB. The training data were
randomly partitioned into equal parts, one for each noise condi-
tion; the same procedure was applied for the test set.

The objective in the clean experiment was to partition the
space by speaker. For the noisy data, we evaluated partitioning
by noise condition. In both cases we evaluated partitions formed
from a priori information about the data (labelled as “K-B” in
the tables), as well as by unsupervised k-means clustering. The
four methods for partition selection: partition selection, a pri-
ori, best score and combination, labelled A,B,C and D respec-
tively in the tables, were evaluated. We used a 256-Gaussian
GMM for background models in all cases.

In the clean experiment we evaluated the performance ob-
tained with speaker-based partitions with different numbers
of partitions. As a baseline we also evaluated the conven-
tional verification framework, where we trained generic gender-
dependent background models (UBM) and adapted these to
the target speaker using MAP [8], Joint Factor Analysis (JFA)
[9, 10] and Minimum Verification Error (MVE) [25] training.
The UBM did not include data from any target speaker. The
code for JFA was obtained from the implementation by [26].

For the noise experiment we employed 5 partitions, one cor-
responding to each SNR level. The proposed method only es-
tablishes a mechanism for defining background models. The
method described in Section 3.1 actually uses MVE to learn
partition-specific target models. Partition-specific target models
may also be trained via JFA or MAP. For the noise experiments
these were also evaluated in addition to UBM-based baselines.

4.2. Results
Table 1 shows the results for the clean experiments with differ-
ent numbers of partitions. The EER and minDFC (minimum
detection cost function) results are shown. The ensemble model

improves performance in every case. Morever, partitions based
on a priori knoweldge consistently outperform partitions ob-
tained from unsupervised clustering. The best result is obtained
when scores from the partitions are combined; this result sig-
nificantly outperforms JFA, and is the best result we have ever
obtained on this test set. Increasing the number of partitions
beyond 16 resulted in degradation of performance. Discrimina-
tive training of background models to make them specific also
turns out to be key. The alternative is to simply train each of
them using maximum likelihood. This was consistently worse
than discriminative refinement of partition-specific background
models in all experiments.

Table 2 shows results for noisy data. Once again, the en-
semble method results in improvements in every case. Super-
vised partitions obtained from a priori knoweldge of SNR re-
sult in the best performance. Interestingly, identifying the parti-
tion for a test utterance through a priori knowledge of its SNR
did not result in the best performance, although it does outper-
form other methods of selecting partitions. The best results are
obtained, once again, by combining scores from the partitions.
Moreover the best results are obtained by MVE, rather than JFA.
This is an inversion with respect usual results with generic mod-
els, where JFA consistently outperforms MVE training.

5. Conclusions
We have proposed an Ensemble approach to partition the signal
space to perform speaker verification. We find that partitioning
and refining the space by speaker or environment both improve
performance over the baseline significantly. The primary draw-
back is that the best results are obtained when a priori know-
eldge of the factor considered in partitioning is available. We
conjecture that much of this benefit may be obtained if this in-
formation is only estimated for the training data. We will in-
vestigate this in future work. We also propose to investigate
methods for identifying partitions when multiple factors must
be considered concurrently, nad particularly when they must be
estimated. We will also investigate methods for formally opti-
mizing the partitions for verification.
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lection method for speaker verification,” in Proc. Int. Conf. on
Spoken Language Processing (ICSLP 2004), vol. 3, 2004, pp.
2401–2402.

[24] A. Martin and C. Greenberg, “NIST 2008 Speaker Recognition
Evaluation: Performance Across Telephone and Room Micro-
phone Channels,” in Proc. Interspeech, 2009.

[25] A. E. Rosenberg, O. Siohan, and S. Parthasarathy, “Speaker verifi-
cation using minimum verification error training,” Proc. ICASSP,
pp. 105–108, 1998.

[26] L. Burget, M. Fapso, and V. Hubeika, “BUT system for NIST
2008 speaker recognition evaluation,” in Interspeech, 2009.

2459


