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Abstract 
Neurophysiological changes in the brain associated with major 
depression disorder can disrupt articulatory precision in speech 
production. Motivated by this observation, we address the 
hypothesis that articulatory features, as manifested through 
formant frequency tracks, can help in automatically classifying 
depression state. Specifically, we investigate the relative 
importance of vocal tract formant frequencies and their 
dynamic features from sustained vowels and conversational 
speech. Using a database consisting of audio from 35 subjects 
with clinical measures of depression severity, we explore the 
performance of Gaussian mixture model (GMM) and support 
vector machine (SVM) classifiers. With only formant 
frequencies and their dynamics given by velocity and 
acceleration, we show that depression state can be classified 
with an optimal sensitivity/specificity/area under the ROC 
curve of 0.86/0.64/0.70 and 0.77/0.77/0.73 for GMMs and 
SVMs, respectively. Future work will involve merging our 
formant-based characterization with vocal source and prosodic 
features. 
Index Terms: major depressive disorder, motor coordination, 
articulatory control, vocal biomarkers, formant frequencies 

1. Introduction 
Major depressive disorder (MDD) has shown itself to be a 
major public health concern. The World Health Organization 
found that depressive disorders increased from the fourth-
leading cause to the third-leading cause of global burden 
affecting an individual’s quality of life [1]. While the 
prevalence and burden of MDD has risen, however, diagnosis 
and monitoring of treatment efficacy continue to be 
constrained by the limited number of clinically trained 
physicians globally. This constraint on clinical resources has 
increased the urgency and necessity of a reliable automated 
method of depression evaluation. Such a method would aid in 
determining the efficacy of new medications in clinical trials. 

Vocal features are desirable as potential biomarkers of 
depression as they can be obtained easily (e.g., via telephone), 
greatly increasing the global accessibility of an automated 
method toward depression diagnosis and assessment. Certain 
vocal features have been shown to change with a subject’s 
mental condition and emotional state in depression, including 
those based on prosody (e.g., fundamental frequency and 
speaking rate), spectral representations (e.g., mel cepstra), and 
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glottal excitation flow patterns, timing jitter, amplitude 
shimmer, and aspiration [2–9]. Such features from the voices 
of depressed subjects relate to auditory perceptions of 
monotony, hoarseness, breathiness, glottalization, and slurring. 

A motivation of the present paper is that 
neurophysiological changes associated with depression affect 
motor coordination and therefore the disruption of articulatory 
control and kinematics [7, 10, 11]. We propose to characterize 
these disruptions in articulation through 1) modifications of 
the average formant space (e.g., slurring may compress this 
space) and 2) modifications of the dynamics of the formants 
(e.g., agitation may introduce an erratic behavior in a formant 
track and monotony may reduce the rate of frequency 
transitions). We anticipate that formant features relating to the 
precision of motor control in articulation will be noticeably 
influenced in patients with depression. 

The purpose of this study is to assess the performance of 
Gaussian mixture model (GMM) and support vector machine 
(SVM) classifiers to determine depression state from features 
derived from formant frequency trajectories. Our paper is 
organized as follows. In Section 2, we describe the database, 
including ratings of depression, and present previous results 
using this database. In Section 3, we describe our signal-
processing methodologies for formant-feature extraction. 
Section 4 describes our classification approaches, and 
Section 5 reports results from these approaches. In Section 6, 
we provide conclusions and projections toward future work. 

2. Depression database 

2.1. Description  
We use a 35-subject database collected by Mundt et al. [2] of 
subjects with depression treated over a 6-week duration in an 
open-label, naturalistic study design. The speech data were 
collected in a depression-severity study that included 
telephone-based speech recordings from subjects during office 
visits. Thirty-five physician-referred subjects (20 women and 
15 men, mean age 41.8 years) participated in the study. All of 
the subjects had recently started on pharmacotherapy and/or 
psychotherapy for depression and continued in treatment over 
the 6-week assessment period of the study. 

Speech recordings (sampled at 8 kHz) were collected over 
a standard office telephone on weeks 0, 2, 4, and 6. In the 
current work, we analyze speech samples of conversational 
(free-response) speech and sustained vowels (/a/, /i/, /u/, /ae/) 
recorded over telephone while the subjects were present in the 
clinic. Approximately 3–6 minutes of speech per session (i.e., 
per day) were available for analysis. 

The subjects were interviewed in-office by a clinician to 
obtain ratings of depression on the 17-item Hamilton 
depression rating scale (HAM-D) [12]. Total HAM-D scores 
are the sum of the individual 17 symptoms ratings, which 
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reflect items such as depressed mood and psychomotor 
retardation, with each symptom scored on a scale from 0 to 2 
or 0 to 4.  

2.2. Previous results on the Mundt database 
Mundt et al. [2] investigated correlations of variance of pitch 
and numerous parameters that relate to average speaking and 
pause rates with HAM-D scores and an alternative depression 
scale, the quick inventory of depressive symptomatology [13]. 
In that study, average speaking rate and pause parameters were 
found to have correlations in the approximate range −0.20 <
� < 0.20 with �-values less than 0.05. Mundt et al. also found 
a correlation between the variance of the second formant with 
the total HAM-D score (�~0.17, � < 0.05), but no 
corresponding correlation for the first formant (the two 
formants studied). 

In other work [8], average measures of speaking rate were 
categorized into phone-specific characteristics. Combined 
phone-duration measures uncovered stronger relationships 
between speaking rate and depression severity than the global 
measures previously reported as speech-rate biomarkers. More 
importantly, a general framework for analyzing individual 
symptom categories through phonological units was developed 
and showed that a biomarker (e.g., speaking rate) can correlate 
with sub-symptoms (e.g., psychomotor retardation) more 
highly than with a total assessment. Other correlation studies 
on the Mundt database have involved shimmer, jitter, and 
harmonics-to-noise ratio [9]. One classifier study involved a 
GMM-based classifier using mel-cepstral features obtaining 
approximately 80% sensitivity and 20% specificity for the 
binary classification problem (depressed or not depressed) 
[14]. 

3. Formant tracking and analysis 
In this section, we describe our formant-feature extraction 
methodology. 

3.1. Formant tracking algorithm 
There are a variety of approaches to the on-going challenge of 
formant estimation and tracking. We have selected an 
algorithm based on the principle that formants are correlated 
with one another in both frequency and time [15, 16]. Figure 1 
shows an example of formant-track outputs, where the shaded 
areas around each track represent the 3-dB formant bandwidth. 
Embedded in the algorithm is a speech-activity detector that 
enables a Kalman predictor to smoothly coast consistently 
through non-speech regions. All measurements are made 
during frames with speech activity. 

 
Figure 1: Example spectrogram of the first three formant 
tracks. Shaded blue region around each track depicts 3-dB 
formant bandwidth. 

3.2. Formant Features 
In characterizing formants and their dynamics, we extract nine 
features per formant per 20-ms segment at a 10-ms frame 

interval, which is a basis for feature selection for our 
classifiers. Figure 2 defines these features as samples of the 
raw formant frequency track, its lowpass component, its 
highpass component, and the velocity and acceleration of 
those trajectories. Derivatives are computed by averaging first 
forward and backward differences across frames. This 
provides a form of dynamics of each formant, their low-
frequency target trajectories, as well as their variability around 
these targets.  
     The high-frequency component captures the transitional 
formant properties that are more high-pass in nature, whereas 
the low-frequency component captures formant properties that 
are perhaps more semantic-based, representing a smoothed 
rendition of underlying planned targets. The two formant 
components may therefore reflect different effects of 
neurophysiological change in depression. This 
lowpass/highpass paradigm was inspired by a prosodic 
modeling approach of Fujisaki and Hirose [17]. Figure 3 
displays an example output of the lowpass/highpass track 
decomposition. 
 

 
Figure 2: Derivation of nine features per formant (k) 
per frame (shown here for �� over time �;  � ∈
 {1, 2, 3}). After applying a lowpass filter (LPF) and 
highpass filter (HPF) to the formant trajectories, 
velocities (') and accelerations ('') are also computed. 
The common 3-dB cutoff frequency of the filters is 
55 Hz. 

4. Classification of depression state 
Recent studies have investigated correlations of vocal features 
with depression and have begun to incorporate them into the 
development of classifiers [4, 5, 7, 10, 14, 18]. Formants and 
their dynamics, however, have not been explicitly analyzed. 
To investigate the effectiveness of classifying depression state 
with a formant characterization, we make use of both a 
generative and discriminative classifier,   using truth labels 
specifying each patient-session as depressed or not depressed. 
Subject sessions were labeled as depressed if their HAM-D 
score was 17 or greater, and  as non-depressed if their score 
was 7 or lower, with scores of 8 to 16 excluded because their 
depression status is ambiguous.  Four patients whose scores all 
ranged between  8  and 16 were excluded.     The generative 
classifier  is  a Gaussian mixture model (GMM), and the 
discriminative model is  a support vector machine (SVM). 

We evaluate classifier performance through the analysis of 
two sections of the clinical interview: vowels and free 
response. Results are analyzed in terms of sensitivity (true 
positive prediction rate), and specificity (true negative 
prediction rate). Our performance is also summarized using a 
ROC curve, which allows us to balance the sensitivity and 
specificity of our classifiers, as well as report the area under 
the curve (AUC). AUC is an informative statistic describing 
the average tradeoff between sensitivity and specificity. 
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Figure 3: Example of the lowpass/highpass filtering 
process on the first formant track estimated from a speech 
segment. Upper panel: raw formant track (blue) and low-
passed component (red); Lower panel: high-passed 
component. Original formant tracks coast through non-
speech regions enabled by a Kalman predictor. 

4.1. Feature selection 
Formant features are categorized into three different groups: 
1) Vowels—the average �� extracted from sustained vowels 
/a/, /i/, /u/, /ae/; 2) Free Formant—the frame-sampled formant 
estimates ��, along with their low-passed (��,	) and high-
passed (��,
) components extracted from the free response 
section; 3) Free Dynamic—the velocity (��

� ) and acceleration 
(��

��) versions of the frame-sampled formant trajectories, and 
their respective filtered components (��,	

� , ��,

�  and ��,	

�� , ��,

�� ) 

extracted from the free response section. Within these three 
groups, we explore combinations of features for classification. 

In order to reduce dimensionality and prevent over-fitting, 
we select group-specific formant features based on joint 
mutual information and classifier performance metrics of 
sensitivity, specificity, and AUC. For both classifiers, these 
criteria resulted in selecting average � estimates within the 
Vowels group and ��, �,	, and ��,	 estimates within the Free 
Formant group. Finally, for the Free Dynamic group, ��,	

�  and 
��,


�  (� ∈  {1, 2, 3}) are selected for the GMM, and ��,	
��  and 

��,

��  (� ∈  {1, 3}) are selected for the SVM classifier. 

The group-specific formant features are then Z-normalized 
and passed into a principle component analysis (PCA) 
algorithm. A subset of the principle components are used to 
train the classifiers. The Vowels group is represented by the 
first two PCA dimensions in both classifiers. The Free 
Formant group is represented by the first PCA dimension in 
both classifiers. Finally, the Free Dynamic group is 
represented by the first three PCA dimensions in the GMM 
and the first four PCA dimensions in the SVM classifier. 

Finally, as a comparative reference, we study three 
acoustic features developed by Sapir and colleagues that 
characterize “vowel centralization” for differentiating 
dysarthric speech in subjects with and without Parkinson’s 
disease [19–21]. These features are the Formant Centralization 
Ratio: ��� = (��� + ��� + �� + ��)/(��� + ��), its 
inverse the Vowel Articulation Index: ��� = (��� +
��)/(��� + ��� + �� + ��), and the ratio of the second 
formants of /i/ and /u/: ���/���. 

4.2. Gaussian mixture model classifier 
Our generative modeling approach, adapted from [22], is to 
form a background statistical model of all the subjects in the 
database and then to form specific models for depressed and 
non-depressed subjects. The statistical models are Gaussian 

mixture models (GMMs), weighted combinations of multiple 
Gaussian densities. The Gaussian densities are defined using 
diagonal covariance matrices, where ten mixture components 
are used. These parameters are obtained using one iteration of 
the expectation-maximization algorithm on the training data 
set. The depressed and non-depressed GMMs are obtained 
from the background GMM using a Bayesian adaptation 
procedure [22], which is applied to the depressed and non-
depressed training data subsets, respectively. The GMMs are 
evaluated on each subject using cross-validation that leaves all 
sessions from the test subject out of the training set. 

To obtain robustness to small data sets, the likelihoods 
from ten independently trained GMMs are combined.  (Use of 
5 and 20 GMMs reduced performance.) Specifically, ten 
different background GMMs are obtained using independent 
random initializations, resulting in the adaptation of ten 
depressed and non-depressed GMMs. The single-frame 
prediction score is the 2-class log-likelihood ratio obtained 
from the log of the sum of the ten depressed GMM likelihoods 
minus the log of the sum of the ten non-depressed GMM 
likelihoods. Multi-frame classification scores are obtained by 
averaging these log-likelihood ratios across frames. 
Predictions from separate feature groups are fused using a 
weighted combination of the log-likelihood ratios. Log-
likelihood ratios obtained from the groups extracted from the 
free response section are weighted ten times more than ratios 
taken from the group extracted from sustained vowels. 

4.3. Support vector machine classifier 
Our discriminative modeling approach makes use of a two-
class support vector machine (SVM). SVM classification is 
done in a supervised manner through a training phase where 
the model creates a classification boundary to distinguish 
between the two classes. An SVM classifies depressed and 
non-depressed subjects by forming a decision boundary that 
creates the maximum possible separation between classes in 
the feature space. The SVM is implemented using the models 
developed by Chang et al. [23] and Fan et al. [24]. 

As with our GMM classifier, training and testing for the 
SVM are done using cross-validation, with a single subject 
being held out for testing at each iteration of model training. 
The classifier is penalized more heavily for misclassifying 
non-depressed sessions (versus misclassifying depressed 
sessions) to account for differences in available data within 
each group. 

The subject responses from the free response section are 
classified on a frame-by-frame basis. For each frame, the 
distance from the SVM hyperplane (the decision value) is 
determined. The decision values are averaged across frames to 
allow for a prediction to be made for each session. In order to 
fuse the separate feature groups, decision values are 
normalized by the maximum value occurring within a group. 
The normalized decision values are then averaged across the 
groups. 

5. Results 
Performance is reported using both sensitivity and specificity, 
along with the area under the ROC curve (AUC). Figure 4 
illustrates the relative performance within each feature group. 
The GMM shows a marginally higher AUC for the Vowels 
group, whereas the SVM shows a marginally higher AUC on  
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Figure 4: ROC curves comparing distinct feature groups using 
a) GMM and b) SVM classifiers. 

the features extracted for the Free Formant and Free Dynamic 
groups. 

To potentially improve performance, the classifier outputs 
are then fused using multiple combinations of the three feature 
groups. Along with the AUC, the optimal sensitivity and 
specificity (Se/Sp)—defined as the point on the ROC curve 
maximizing the sum of the two values—is reported. We also 
report the sensitivity at a fixed specificity of 0.70 (SeSp0.70). 
Table 1 reports these metrics, with the corresponding ROC 
curves shown in Figure 5. 

The results presented in Table 1 and Figure 5 demonstrate 
the differences in performance seen when combining 
predictions from distinct feature groups for a single classifier. 
Maximum AUCs of 0.70 and 0.76 are obtained for the GMM 
and SVM, respectively, when predictions from all three groups 
are fused. These AUCs indicate an increased range for 
sensitivity and specificity as the operating point of the ROC is 
varied. Optimal Se/Sp is 0.86/0.64 for the GMM and 0.77/0.77 
for the SVM, obtained through fusing the Vowels group with 
the Free Formant group. 

Comparing Figure 5 with Figure 4, we see potential 
differences in classifier performance when incorporating 
dynamic aspects with the raw formant frequencies from the 
free response section. For the SVM, the AUC is 0.74 for the 
Free Formant + Free Dynamic fusion versus 0.68 for the Free 
Formant group alone and 0.67 for the Free Dynamic group 
alone. This gain is less definitive for GMM performance. 

 
Groups fused Classifier AUC Se/Sp SeSp0.70 

Vowels + Free Formant GMM 0.70 0.86/0.64 0.60 
Vowels + Free Dynamic GMM 0.67 0.74/0.68 0.65 

Free Formant +  
Free Dynamic 

GMM 0.64 0.68/0.72 0.63 

All groups GMM 0.70 0.84/0.64 0.60 
     

Vowels + Free Formant SVM 0.73 0.77/0.77 0.77 
Vowels + Free Dynamic SVM 0.71 0.65/0.68 0.61 

Free Formant +  
Free Dynamic 

SVM 0.74 0.74/0.77 0.74 

All groups SVM 0.76 0.82/0.66 0.70 

Table 1: Summary of classification performance. 

Finally, using the vowel centralization features FCR, VAI, 

   

  
Figure 5: ROC curves comparing a) GMM and b) 
SVM classifier performance when feature groups are 
fused post-classification. 

and F��/F�� individually, depression classification yields 
AUCs below 0.5, indicating that these features may not be 
useful for the assessment of depression state. 

6. Conclusions and on-going work 
Given that neurophysiological changes due to major 
depressive disorder influence the articulatory precision of 
speech production [7, 10, 11], we investigated vocal tract 
formant frequencies and their velocity and acceleration toward 
automatic classification of depression state. We analyzed 
formant characteristics of 31 subjects who were rated using 
clinical measures of depression severity [2]. The relative 
importance of formant features were explored in the context of 
both a generative GMM classifier and a discriminative SVM 
classifier of binary depression state. The GMM and SVM 
achieved a sensitivity/specificity/AUC of 0.86/0.64/0.70 and 
0.77/0.77/0.73, respectively. We have also provided initial 
evidence for including both formant trajectories and their 
dynamic features to more accurately classify depression state. 
      These are important findings given that only the first three 
formant frequencies and their dynamic characterization were 
used as a basis for features, leaving the possibility of improved 
classification accuracy by incorporating other aspects of 
speech production. Our on-going work involves improving the 
current feature estimation and selection methods, merging our 
formant-based features with other formant characteristics and 
vocal source and prosodic features, and validating and refining 
the classifiers and feature combinations using a larger 
similarly recorded database. Such enhancements in this 
research may provide a quantitative assessment of drug 
efficacy in a clinical setting. 
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