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Abstract 

In this study, we investigate physical parameters which can be 
used to classify speech as either stressed or neutral based on a 
two-mass vocal fold model. The model attempts to characterize 
the behavior of the vocal folds and fluid airflow properties when 
stress is present. The two-mass model is fitted to real speech to 
estimate the values of physical parameters that represent the 
stiffness of vocal folds, vocal fold viscosity loss, and subglottal 
pressure coming from the lungs. The estimated parameters can 
be used to distinguish stressed speech from neutral speech 
because these parameters can represent the mechanisms of vocal 
folds under stress. We propose combinations of physical 
parameters as features for classification. Experimental results 
show that our proposed features achieved better classification 
performance than features derived from traditional methods. 
Index Terms: physical parameters, two-mass model, speech 
under stress, stress classification 

1. Introduction 

The affect of stress on speech signals has been the topic of 
numerous studies. Many factors, such as emotional state, fatigue, 
physical environment, and workload can cause people to 
experience stress. It has become increasingly important to study 
speech under stress in order to improve the performance of 
speech recognition systems, to recognize when people are in a 
stressed state, and to understand the context in which a speaker is 
communicating.  

Researchers have attempted to probe reliable indicators of 
stress by analyzing acoustic variables. The first investigations of 
emotional speech were conducted by Van Bezooijen [1] and 
Scherer [2] using the statistical properties of acoustic features to 
recognize emotions from speech around the mid-1980s. Williams 
and Stevens found that the fundamental frequency (F0) has 
different characteristics for each emotion [3], and that respiration 
patterns and muscle tension also change [4]. The influence of the 
Lombard effect on speech recognition has been examined in [5], 
which analyzed selected acoustic features, such as amplitude and 
distribution of spectral energy, and found that spectral energy 
shifted to higher frequencies for consonants. High workload 
stress has been proven to have a significant impact on the 
performance of speech recognition systems, with speech under 
workload sounding faster, softer, or louder than neutral speech 
[6]. In 2011, Matsuo, et al worked on the frequency domain, and 
showed how difference in the spectrum of the high frequency 
band under stressful workload conditions aimed to catch people 

committing remittance fraud, and their proposed measure 
achieved better performance [7]. 

All the features mentioned are based on traditional linear 
speech production models. In 1980, Teager suggested that speech 
production is a nonlinear process and proposed a nonlinear 
model [8] [9]. As a result, some methods based on the Teager 
energy operator (TEO) [10] have been proposed to detect stress, 
like TEO-CB-Auto-Env, TEO-Auto-Env, and TEO-FM-Var [11]. 
But their performances degrade under text-independent 
conditions, and proposed methods don’t consider the airflow 
patterns in nonlinear model. 

It is suggested that the airflow is separated and concomitant 
vortices are distributed around the false vocal folds, which 
causes changes in airflow characteristics, thus the variability in 
interaction has been increased between vocal folds and vocal 
tract. Therefore, it is likely to be helpful to model airflow 
patterns in order to characterize speech production. Furthermore, 
vortex interactions differ markedly between neutral and stressed 
speech [12]. In physiological systems, it is believed that changes 
in physical characteristics induced by stressful conditions will 
affect the vortex-flow interaction patterns [13]. Therefore, a 
physical model which provides a direct means for representing 
the speech production is needed to estimate the parameters in the 
physiological system.  

The physical features we proposed are based on a speech 
production model using fluid flow characteristics. The properties 
of the underlying physical speech production system are 
explored in an effort to search for the parameters of the physical 
model related to stress. Vortex interaction has a modulating 
effect on both glottal source and the vocal tract, but in this paper 
the characteristics of the glottal source of speech is chiefly 
considered, and related to physical parameters to show how it 
varies under text-independent conditions. 

In our previous work [14], we estimated stiffness parameters 
for classification of stressed speech, which represent the muscle 
tension based on a physical model. In this paper, we concentrate 
on proposing a fitting method for the two-mass model to 
estimate physical parameters including stiffness, viscosity loss in 
vocal folds, and subglottal pressure from real speech. In section 
2 the method for fitting to estimate the physical parameters is 
represented. In Section 3 our experimental results are analyzed to 
evaluate the obtained parameters and to show their 
corresponding classification performance for neutral and stressed 
speech. Finally, we draw our conclusions in Section 4. 

2. Estimation of physical parameters 
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Figure 1: Two-mass approximation of the vocal folds 

2.1. Two-mass model 

The two-mass vocal fold model was proposed by Ishizaka and 
Flanagan to simulate the process of speech production [15]. 
Figure 1 shows the structure of the two-mass model. Each vocal 
fold is represented by two mass-spring-damper systems: 
 
                                                                                                     (1) 
 
                                                                                                     (2) 
where are the masses, are their horizontal displacements 

measured from the rest (neutral) position , and is the 

coupling stiffness. In this equation,  are the equivalent tensions 

with non-linear relations given by 
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where  are stiffness coefficients and 
ik  is a coefficient of the 

nonlinear relations. 
The damping properties of the vocal folds, caused by the 

viscous resistance of the folds and the larynx tissues, can be 
represented as:  
 
                                                                                                    (4) 
where 

i  is a damping ratio. 

 If the subglottal pressure is represented as , then the 

pressure is dropped to when entering the glottis (at the edge 

of ) according to Bernoulli’s equation. 
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where   is the air density, and 
gU  t volume velocity of glottal 

airflow, and
1gA  the cross-sectional lower glottal area, which is 

represented by (21 xlA gg   is the length of the 

vocal folds, and 
0x is the displac ent when the vocal fold is in 

the rest position. Because of the abrupt contraction in cross-
sectional area at the inlet to the glottis, a vena contracta 
generates, which makes the pressure displays a greater drop. The 
drop is determined by the flow measurements from van den Berg: 
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At the glottal outlet, abrupt expans
over because of the relatively large area of the vocal tract. 

This pressure is given by: 
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2.2. Control parameters 

 represent the muscle tension of 

en

. 
 is the pressure of airflow deriving from 

lun

presented by 
 

here 
id  is the thickness of vocal folds. 

The two-mass model can be represente
nnected to a four-tube model. The vocal tract is represented by 

a standard four-tube configuration for the vowel /a/ [16]. 
Therefore, we assume that the shape of the vocal tract doesn’t 
change over the utterance /a/, and the glottal flow is mainly 
considered to estimate the physical parameters. 

The stiffness parameters, which
the vocal folds, are the main factors relating to fundamental 
frequency, which to some extent have an influence on the vortex-
flow interaction in the vocal tract. In addition, viscous loss and 
subglottal pressure might also be variable parameters for fitting.  

The viscosity of vocal fold tissue can determine the amount of 
ergy loss due to internal friction in the folds. During phonation, 

the vocal folds are lubricated by mucus produced by the lining of 
the sinuses, and an osmotic gradient is established which induces 
fluid movement into and out of the vocal folds, thereby causing 
different hydration effects and presumably changing the 
viscosity of vocal fold tissue [17]. The damping ratio of viscosity 
has been estimated by Kaneko and Isshiki [18]. Results show 
that there is a close correlation between the damping ratio and 
variation in F0, which is a stress indicator [19]. Therefore, in this 
work we assume the damping ratio is a parameter which is varies 
in a narrow range during phonation under different conditions. 
Considering the aerodynamics, the increase of viscosity induces 
a substantial decrease of airflow amount when glottis is closing, 
which has an impact on vortex-interaction. Because viscosity of 
the vocal folds depends mainly on the bulk of the cord (

1m of our 

model), so here 
1  is primarily considered as a tential 

parameter for fitting
Subglottal pressure

po

gs, and becomes the main factor used by speakers to control 
phonation when producing speech. It is the other factor to affect 
F0 and also has an influence on airflow separation. The 
separation phenomenon causes energy loss, which is  
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Figure 2: Structure of fitting algorithm 

proportional to the increase in subglottal pressure. In other words, 
a higher subglottal pressure increases the velocity of airflow, 
causing more vortices to generate. That is the other primary 
reason to contribute the vortex-interaction between the vocal 
folds and the vocal tract. Based on these considerations,  
subglottal pressure can be selected as one of the physical 
parameters for fitting. 

Therefore, in order to fit the model to real speech, stiffness 
,damping ratio 

ckkk ,, 21 1 , and subglottal pressure  are 

selected as control parameters for estimation.  
sP

2.3. Fitting algorithm 

As target parameters in the data, the fundamental frequency (F0) 
and spectral flatness measure (SFM) can be chosen. It is believed 
that when stress occurs, the fundamental frequency and spectrum 
of the glottal source are impacted. The harmonic structure of the 
spectrum loses clarity in the high frequency band, and the 
spectrum becomes smooth and irregular. This irregularity can be 
quantified with a “spectral flatness measure” (SFM): 
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where  is the magnitude of the n th bin of the power 

spectrum.  
)(nS

Fitting the two-mass model to the real data involves two 
steps. First, real speech coming from the database is analyzed 
using linear predictive coding (LPC) to reach the residual signal, 
which removes the influence of formants and lip radiation. Then, 
the measured target parameters denoting F0 and SFM can be 
determined from the spectrum of the residual signal. In the 
second step, each set of target parameters is considered 
separately. Then, simulation can be conducted using the two-
mass model to generate glottal flow using constant control 
parameters. F0 and SFM are calculated from the simulated glottal 
flow, and are compared with the measured target parameters 
obtained in the first step to obtain the difference between them. 
The distinction between the simulated target parameters and the 
measured target value can be represented by a cost function. The 
control parameters are then varied until the cost function reaches 
a minimum.  

The cost function can be defined as a weighted sum of the 
squared difference between the simulated parameters and the 
measured targets from real speech: 
 
                                                                                                   (12) 
                                                                                                  

where asterisk denotes the target value. The weights are given 
the value 

21,  to normalize the different target parameters to 

the same range，where the overbar denotes mean values over 
the target region. Optimal values of the control parameters were 
then calculated using the Nelder-Mead simplex method [20], 
which is implemented to search for the optimal stiffness 
parameters which will minimize the cost function. The structure 
of this algorithm is shown in Figure 2.  

After fitting, the physical parameters can be estimated using 
the two-mass model. Each parameter , , 

sP   ckk ,1  1 and    

parameter sets         11111 ,,,,,,,,,  csccs kkPkkkkP are 

Control  
parameters 

analyzed to show and compare their classification performance. 

3. Experiments 

3.1. Database and experimental setup 

In the experiments, we used a database collected by the Fujitsu 
Corporation containing speech samples from eleven subjects, 
four male, and seven female [9]. To simulate mental pressure 
resulting in psychological stress, three different tasks were 
introduced, which were performed by the speakers while having 
telephone conversations with an operator, in order to simulate a 
situation involving pressure during a telephone call. The three 
tasks involved (A) Concentration; (B) Time pressure; and (C) 
Risk taking. For each speaker, there are four dialogues with 
different tasks. In two dialogues, the speaker is asked to finish 
the tasks within a limited amount of time, and in the other 
dialogues there is a relaxed chat without any task. 

All of the data come from telephone calls, so the sampling 
frequency is 8 kHz. We chose 6 speakers, 3 male and 3 female). 
The segments with the vowel /a/ were cut from the speech, 
selected as samples. The number of samples depends on speakers, 
and the total amount  is about 60-110 for each person. In order to 

fold 
cross-validation method was used in experiments of 
classification, with 60% of samples for training, and the rest for 
testing. The samples are analyzed with 12th-order LPC, and 
frame size chosen to perform the experiment was 64ms, with 
16ms for frame shift.  The frequency band of the spectrum was 
limited to 3000Hz-4000Hz for calculating the spectral flatness 
measure. Linear classifiers were used based on minimum 
Euclidean distance to perform classification. 

increase the significance level of experimental results, a K-

3.2. Results and analysis 

By fitting the model to the real data, the physical parameters can 
be estimated. The obtained parameters are used as features to 
perform the classification into neutral and stressed speech. First, 
we focus on each parameter individually, and fix the other 
parameters at typical values. Then each parameter’s impact on 
stress recognition is examined respectively. The results are 
shown in Figure 3. For these physical parameters, the results 
show that the stiffness achieves the best classification 
performance, which means it is strongly linked to stress. The  
other two parameters vary in performance depending on the 
speakers. For males, damping ratio plays a more important role, 
while for females, subglottal pressure, which determines the 
fundamental frequency, is a better indicator of stress.  

F0 is dependent on stiffness and subglottal pressure, while the 
viscosity of vocal folds is completely determined by stiffness and 
damping ratio, therefore the parameter sets  

Glottal flow 
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Figure 3: Performance for each parameter 

 

Figure 4: Classification performance 

       11111 ,,,,,,,,,  csccs kkPkkkkP

  cs kkP ,, 1  11 ,, ckk







were proposed. We 

checked their performance and made a comparison with 
traditionally proposed features, and the results are shown in 
Figure 4.  The results show that the proposed physical 
parameters perform better than the traditional features used for 
stress detection, which suggests that parameters estimated from a 
physical model are more effective at representing stress during 
phonation. Of the proposed sets, the stress classification rate of  

 is higher than with female data. This 

suggests that females are more likely to exhibit stress vocally 
through variation in F0 than male speakers, which agrees with the 
results above. Furthermore, results show that  has 

the best stress recognition performance of the physical parameter 
sets. This illustrates that stiffness, damping ratio of the vocal 
folds, and subglottal pressure below the trachea are the factors to 
be impacted when a speaker is under stress.  

  11 ,,, cs kkP

4. Conclusions 

In this paper, a physical model characterizing the fluid airflow 
properties was used to simulate speech production. The physical 
parameters, stiffness, damping ratio, and subglottal pressure, 
were estimated using a method that fits the two-mass model to 
real data using F0 and SFM as targets. The obtained parameters 
were used as physical features for the classification of neutral 
and stressed speech under text-independent conditions. The 
conclusion drawn is that subglottal pressure from lungs, muscle 

tension, and viscosity of the vocal folds are key indicators of 
stress during phonation. 
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