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Abstract sinusoidal features codebooks [10] than the model-based ap-
) ) proaches of Weiss and Ellis [2]. The separation results reported

Model-based approaches to achieve Single Channel Source i, 110] were also comparable to Hershey et al. [3]. Relaxing the
_Separatlon (SCSS) have been reasonably successful at Ser’arat'speaker-dependent codebook requirement, by using gender de-
ing two sources. However, most of the currently used model-  engent codebooks, led to a decrease in separation performance
based approaches require pre-trained speaker specific models|g 7] weiss and Ellis demonstrated a speaker-independent
|n_order_tc_> perform the separation. Often, insufficient or no approach to SCSS by creating speaker-specific models using
prior training data may be available to develop such speaker gSTET.hased codebooks on a subset of speakers but then using
specific models, necessitating the use of a speaker independent i,o models to derive models of novel speakers whose utterances
approach to SCSS. This paper proposes a speaker independent,,o 4 heen withheld 2],
approach to SCSS using sinusoidal features. The algorithm de- In this report, a speaker-independent approach to SCSS is
velops speaker models for novel speakers from the speech mix- presented that builds on the strategy used by Weiss and Ellis.
tures under test, using prior training data available from other pother than using HMMs trained with the log power spectrum
speakers. An iterative scheme improves the models with respect though, sinusoidal features based Vector Quantized (VQ) code-
to the novel speakers present in the test mixtures. Experimental o1 are used to perform speaker independent SCSS. The ini-
results indicate improved separation performance as measured yj5| speaker codebooks are generated using a best Eigenweights
by the Perceptual Evaluation of Speech Quality (PESQ) scores ggarch, followed by construction of initial versions of the source

of the separated sources. ) _ utterances present in the test speech mixtures. An iterative
Index Terms: single channel, source separation, speaker inde- scheme js then applied to the initially-developed codebooks to
pendent, sinusoidal features. adapt them to the speakers present in the mixtures. The re-
. sult is improved estimates of the individual speakers utterances.

1. Introduction The improvements in separation are measured by the increase

in PESQ scores of the reconstructed sources after the iterations.
Further, building on the idea that a single channel recording is
likely to contain a sequence of different mixtures of talkers, a
novel Successive Mixtures Codebook Replacement (SMCR) al-
gorithm is presented, which uses the codebooks developed after
separating one mixture, as the initial codebooks for separating
the next mixture, to obtain even better estimates of the sources.
In the next section, the use of sinusoidal features in source
separation is introduced and the generation of sinusoidal code-
books is also briefly described. Section 3 provides a description
of the proposed approach, and also discusses some modifica-
tions that have been incorporated to obtain better SCSS perfor-
mance. The experimental results are presented in Section 4, and
Section 5 summarizes what has been achieved and future work.

Source Separation systems have become vital components of
most computer audition systems. Without preprocessing by
a source separation component, most speech recognition and
speaker verification/recognition systems fail to work satisfacto-
rily on mixtures of speech signals. Of all the different categories
of source separation, the most difficult one is the so-called un-
derdetermined case, which occurs when there are fewer obser-
vation channels than sources contributing to the speech mix-
tures. A particularly difficult case within this category is the
situation when only one channel is available to observe the
speech mixture, known as the Single Channel Source Separa-
tion (SCSS) problem. Even for the relatively simple case of
instantaneous mixtures, this problem is ill-conditioned as the
mixing matrix is non invertible.

The 2006 Speech Separation Challenge (SSC) resulted in
an extensive comparison of different state-of-the-art SCSS sys- 2. Sinusoidal Featuresfor Source
tems in terms of automatic speech recognition accuracy, under :
similar testing conditions [1]. Several participants used model- Separ ation
based approaches to separate the binary mixtures [1-3]. One
model-driven approach, using sinusoidal features [4, 5], was
demonstrated by Mowlaee et al. [6-10]. They achieved better . ) )
separation performance, as measured by Perceptual Evaluation EXPloiting the quasi-stationary nature of a speech frame,

; ; McAulay and Quatieri proposed that a linear combination of
of Speech Quality (PESQ) scores, by using speaker dependent ™’ c .
P Q y( Q) y gsp P sinusoids could be used to approximate speech [4]. In the cur-

The work of Pejman Mowlaee is funded by the European Commis-  rent application, within a frame, the speech of talkesy (n),
sion within the Marie Curie ITN AUDIS, grant PITNGA-2008-214699. is assumed to be composed bfsinusoidal components, plus

2.1. Sinusoidal signal representation
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additive noisegy(n):

L
sk(n) = ZA;“- cos(nwk,i + Pk,i) + ex(n),

i=1

@)

wheren € [0, N — 1], andN is the frame length. Each cosine
term is parameterized by amplitudg; ;, frequencyws,; and
phasegpy ;. All three L-length parameters were extracted from
the Short-Term Fourier Transform (STFT) of the speech frame.
To account for the logarithmic sensitivity of human auditory
perception, the sinusoidal features used in the present work
were derived from frequency bins uniformly distributed along
the Mel scale rather than linearly-spaced frequency bins [8].
Details of how these parameters were evaluated can be found
in Mowlaee et al. [6].

Each sinusoid is then represented by a complex exponen-
tial sequencevy; = [l ¥k i@ (N=1T
where ¢ € [1,L]. An amplitude vector, a;, con-
taining the products of the selected magnitude and
phase vectors, for each bin was defined as
[Ak,1€j¢k’1 Akylefjﬁbk.l Ak’Leﬂbk,L AkyLe*]#’k.L}Tl
The kth speaker is represented in terms of the si-

nusoidal features ass, = Via,, Wwhere Vi is
a 2L x N Vandermonde matrix given asVy =
[V Vi1 V2 Vz,z Vi,L VZ,L}T: where

vi,; denotes the complex conjugate of ;. An N-length
frame of the mixturez(n), comprised of speakers can be
expressed as

Zsk(n),

k=1

z(n) = n=0,---,N—1 )

For the current study, only the case &f = 2 speakers was
considered.

2.2. Sinusoidal featuresbased source separation

Speaker-specific split-VQ codebooks were generated for each
speaker according to the scheme described by Mowlaee et
al. [6]. The task of separating the sources present in a
binary mixture translates to finding the set of unknowns
{A1,Azi,91,4,v2: 2, from the codebook; for speaker

one andC for speaker two, so that a cost function, taking the
code vector distances into account, is minimized. This amounts
to solving the following minimization problem

TV — ALV IB

L
arg min Z [(Azivz,i — (3)

Ar A9 or o4 ©
A1¢i,vA2,1:>V1‘wV2,7: i=1

where/l'{,i andv7 ; are therth codevector from the codebook
C; and Agﬂ. and v3 ; are theqth codevector from the code-
book C;. The utterances are reconstructed using the overlap
add method (OLA), once the codebook entries are selected.

3. Proposed Approach

3.1. Initial model using Eigenvoice adaptation

We extend the idea of Eigenvoice adaptation (EA), originally

proposed by Kuhn et al. [11] and used for SCSS by Weiss and
Ellis [2], to incorporate the use of sinusoidal features. Code-
vectors of each speaker-specific codeb@ilare arranged in a
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single row to form a supervecten,. Supervectors from/ dif-
ferent speakers (whefd # K) are then concatenated to form
a supervector MatriXU of M rows which can be expressed as

U:[mlam27"'7m1w]‘ (4)
We then perform Principal Component analysis (PCA)Wn
toyield M — 1 Eigenvectorsji, fiz, - - - , fine—1 Any speaker-

specific codebook(;, can be represented as a linear combina-
tion of the Eigenvectors and the mean superveetgras
M-—1
m; = Y wijji; +m,

=1

©)

wherew;; is the corresponding Eigenweightwf; with respect
to the Eigenvectofi;.

To construct initial estimates of the unknown sources con-
stituting a mixture, Weiss and Ellis [2] quantized the Eigen-
weights of each of\/ speakers to three levels, and used the
Iroquois speaker identification algorithm [12] to develop ini-
tial source models following a bottom up construction. In the
current work, using quantized Eigenweights to construct initial
amplitude codebooks degraded performance relative to unquan-
tized Eigenweights so they were not quantized. To simplify the
current approach, only amplitude codebooks of the novel speak-
ers were created. Reconstruction was performed by evaluating
the amplitude codevectors from the codebooks that give mini-
mum distortion against the text mixtures sinusoidal amplitudes,
and using the test mixtures frequency and phase vectors. The
following algorithm is proposed to develop initial codebooks
for the novel speakers present in the mixed signal:

1. Fori € [1, M], constructM speaker codebooks using
mi; = wifin + m.

2. Select the winner speaker modal,,; from theseM
speaker models along the lines of the speaker recogni-
tion scheme of Weiss and Ellis [2]:

(a) For each frame of the mixed signal, calculate the
minimum distortion with respect to each of thé
codebookan k1, mko,, mg . (K is initialized
to 1).

Calculate the mean distortion from all the mini-
mum distortions, and set a suitallfeeshold asf
times the mean distortion. Thiereshold is chosen
as a small fraction of the mean distortion to high-
light the contributions from the dominant speaker.

If the minimum distortion is less than thleresh-
old, the cumulative score for the corresponding
codebookm g; is increased by the minimum dis-
tortion. Otherwise it is increased by unity.

Repeat (a)-(c) for all frames of the mixed sig-
nal.The speaker codebook corresponding to the
minimum score, denoted @A, is declared the
winner of thekth stage.

(b

~

(c

~

«d

~

3. Constructms; = wizfic + myy fori = 1,2,--- M
and use the speaker identification system outlined in step
2. to getmyys.

4. Definems; = w;3fis + mw2 , and identify the speaker
modelmyy s using step 2.

5. Keep repeating this strategy to ultimately gefy ;1)
using the(M — 1)th Eigenvector and the corresponding
EigenweightdV; (1.
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This algorithm uses a modified version of the VQ-based speaker
recognition algorithm outlined in Jialong et al. [13]. A penalty
term has been included in step 2-(c) to limit contributions to
only those from the most dominant source as outlined by Ren-
nie et al. [12].

The EA approach develops an initial codebook for the most
dominant speaker present in the mixture. For all the speech
mixtures in which the target speaker is mixed at target Signal
to mask Signal Ratios (SSR) greater than 0 dB, the algorithm
essentially returns an initial model for the target speaker. On
the other hand for all negative target to mask SSRs, the returned
initial model is that of the mask speaker. In its present form, the
approach is unable to develop initial models for the less domi-
nant speaker. To reconstruct an estimate of the dominant speak-
ers utterance, an approximate version of equation (3) is used in
which contributions from the less dominant of the two speakers
are ignored.

3.2. Iterative Codebook Update Algorithm

To improve the estimate of the reconstructed source, the prelim-
inary codebook was modified using the codebook update algo-
rithm proposed by Gersho and Yano [14]. First, the sinusoidal
features of the reconstructed source are extracted.

Then, the minimum distortions (squared distances) for each
frame with respect to the codevectors and the centroid (mean)
of all the frames mapping to a particular codevedpare com-
puted. If the average distortion usif is greater thar times
the mean distortion, for some threshold C; is replaced by
the centroid of the frames that were originally mappedto
The source then is reconstructed using the modified codebook.
This algorithm is repeated 25 times. The source is reconstructed
using the mixed utterance and the updated codebook. Assum-
ing prior knowledge of SSR, an estimate of the less dominant
speaker is also reconstructed. This is achieved by using the prior
knowledge of SSR to transform the mixture into a 0 dB mixture,
and subtracting the estimate of the dominant speaker from the
mixture.

3.3. Successive Mixtures Codebook Replacement

An actual single-channel recording may include more than one
mixed utterance of the two talkers. To exploit the possible avail-
ability of multiple mixed signals, a second enhancement tech-
nique is proposed. The novel Successive Mixtures Codebook
Replacement (SMCR) strategy relies on the fact that, since a
codebook for the dominant talker has already been created us-
ing a single utterance, successive utterances involving the same
talker can be separated using the previously-developed code-
book as the initial codebook. Further updates can be carried out
on this initial codebook to get an updated version with increased
separation performance. This new approach is approximately 5
times faster than using EA algorithm each time a new mixed
utterance is encountered.

4. Experimental Results

The GRID corpus, provided in the speech separation and recog-
nition challenge [1], was used as the speech database. Code-
books of 20 speakers from the corpus were created. As sug-
gested by Mowlaee et al. [6], 500 utterances of each speaker
were down-sampled from 25 KHz to 8 KHz and used to cre-
ate amplitude codebooks with 2048 codevectors. For framing,
a 32 ms von Hann window was used with a frame-shift of 8 ms.
Throughout the simulations presented here, the frequency range
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of interest was 60,3850 Hz uniformly distributed along the Mel
Scale. The order of each codevector was kept at 50 as Mowlaee
reported good performance with codevectors of this order. Each
of the 204850 codevectors was then arranged as a single su-
pervector from which a supervector matrix was formed. Nine-
teen Eigenvectors and the corresponding Eigenweights for each
speaker were then evaluated.

To test the validity of the proposed approach, 20 utterances
from four talkers not among the 20 used in developing code-
books (7, 8, 17 and 21 of the GRID Corpus) were mixed to
form 120 binary mixtures at seven SSRs (-9, -6, -3, 0, 3, 6 and
9 dB).The dominant source was reconstructed according to the
two proposed schemes: Eigenvoice Adaptation with Iterative
Codebook Update (EA with iteration) and SMCR.

Perceptual Evaluation of Speech Quality (PESQ) scores
[15] of the reconstructed sources with respect to the original
sources were used to assess the performance of the proposed
SCSS system. PESQ scores have been reported in prior SCSS
performance evaluations [6, 10], and have been shown to be
highly correlated with overall speech quality [16]. Further,
Mowlaee et al. have demonstrated that PESQ scores correspond
well to subjective opinions of separation quality [10, 17].

Figure 1, top panel compares, as a function of SSR, the
perceived quality of EA iterated model results and the SMCR
approach against the ideal scenario where prior target and
mask speaker-specific codebooks are available and the opti-
mal indices in (3) are available (from [6]). Two ideal speaker-
dependent scenarios are depicted. One shows the separation
achieved using mixture frequency and phase vectors while the
other depicts an upper bound on performance if the phase is
known. For negative SSRs, the figure depicts equal PESQ
scores for both the EA with iteration and SMCR approaches
because neither approach specifically deals with the less dom-
inant speaker. These scores are evaluated after reconstructing
the target speaker by the approximate method mentioned pre-
viously for the less dominant speaker, and reported as such for
both approaches.

Figure 1, bottom panel depicts the same algorithms PESQs
for the mask speaker. It can be seen that the SMCR strat-
egy improves PESQ scores of the dominant speaker over the
Eigenvoice adaptation approach with iteration. As should be
expected, neither performs as well as methods based on the tar-
get and mask speakers having speaker-specific models already
in the database. For SSRs greater than -3dB, the iterative model
results outperform the initial model, evident by higher scores for
both the EA with iteration and SMCR approaches. From Fig-
ure 1 it is observed that the PESQ results shown for the target
and masker are nearly mirror images of each other. This hap-
pens as we include symmetric range for SSR to consider both
target and masker roles at each utterance. If we average the re-
sults over whole speakers and SSRs in the corpus, the curves
are exact mirrors of each other (similar observations reported
in [6,10]).

5. Discussions and Future Work

The proposed approach extends the Eigenvoice adaptation tech-
nigue to sinusoidal features, leading to speaker-independent
SCSS. The proposed Successive Mixtures Codebook Replace-
ment (SMCR) approach is successful in separating the domi-
nant source with good accuracy, as shown by the PESQ scores.
Additionally, it also benefits from being computationally in-
expensive. Most model-based approaches in the SSC were
speaker dependent although one speaker independent approach
was demonstrated by Weiss and Ellis [2], and two other groups
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Figure 1: Comparison of PESQ scores for reconstruction of Speaker [10]
1 (Target) a) and Speaker 2 (Mask) b) at different SSRs using two
proposed techniques where speaker is unknown against two known/
speaker-dependent models (from [6]).25 iterations are used. The PESQ
scores obtained using only initial Eigenvoice adapted models without
the iterations are also shown. (11]
. . . . [12]
used partially speaker-independent approaches which required

training data for one of the speakers [18, 19]. This paper
presents an approach that relaxes the speaker dependence con-
straint completely. Further, no assumptions about talker gender
have been made. The test mixtures included mixed and same [13]
gender mixtures in equal proportions.

According to our PESQ evaluations, the perceived signal
quality results are relatively low, in line with the results reported
in [10] for the state-of-the-art single-channel separation meth-
ods that participated in the challenge [1]. Therefore, one re-
maining issue, is to improve the quantization performance of
the sinusoidal coders used. One drawback of the proposed ap- [15]
proach is that it does not reconstruct the less dominant source
with good accuracy. While no a priori knowledge of the SSR
is required for the dominant speaker, reconstruction of the less
dominant speaker requires this information. Future work will
attempt to address both these issues. Improvements in recon-
struction using iterative approaches will also be explored. Pos-
sible other applications of the approach in areas such as music-
voice separation will also be investigated by using a generic
sinusoidal features model for voice.

Finally, in this work, we focused on the scenario where
no additive background noise was present in the single-channel
mixed signals. In real applications, this is not the case. We
aim at adapting the proposed method to real scenarios, e.g., the
realistic and natural reverberant environments using many si-
multaneous sound sources as recently presented in [20].
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