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Abstract
Speech-driven assistive technology can be an attractive alter-
native to conventional interfaces for people with physical dis-
abilities. However, often the lack of motor-control of the
speech articulators results in disordered speech, as condition
known as dysarthria. Dysarthric speakers can generally not
obtain satisfactory performances with off-the-shelf automatic
speech recognition (ASR) products and disordered speech ASR
is an increasingly active research area. Sparseness of suitable
data is a big challenge. The experiments described here use
UAspeech, one of the largest dysarthric databases available,
which is still easily an order of magnitude smaller than typical
speech databases. This study investigates how far fundamen-
tal training and adaptation techniques developed in the LVCSR
community can take us. A variety of ASR systems using maxi-
mum likelihood and MAP adaptation strategies are established
with all speakers obtaining significant improvements compared
to the baseline system regardless of the severity of their condi-
tion. The best systems show on average 34% relative improve-
ment on known published results. An analysis of the correla-
tion between intelligibility of the speaker and the type of sys-
tem which would represent an optimal operating point in terms
of performance shows that for severely dysarthric speakers, the
exact choice of system configuration is more critical than for
speakers with less disordered speech.
Index Terms: dysarthric speech, speech recognition, speaker
adaptation

1. Introduction
Dysarthria is the blanket term for a range of disorders which
arise from a loss of control of the speech articulators. It is
the most common speech disorder affecting 170 per 100,000
of the population [1] There are a number of underlying causes:
congenital conditions such as cerebral palsy or acquired neu-
rological conditions as a result of stroke or traumatic brain in-
jury. There is a taxonomy of dysarthrias [2] and there are es-
tablished assessment procedures for speech and language thera-
pists [3]. People with severe dysarthria can be close to unintel-
ligible to unfamiliar listeners, though they can generally com-
municate successfully with family and friends. Dysarthria of-
ten co-occurs with physical disability, and the inability to use
conventional keyboard-and-mouse interfaces or operate assis-
tive technology makes speech control an attractive alternative,
even though the speech is degraded.

There have been a number of small-scale studies of ASR for
dysarthric speech using conventional techniques (see [4, 5] and
[6] for reviews), with patchy results. Some success has been

achieved for mild-to-moderate dysarthria but there is an inverse
relationship between the degree of impairment and the accuracy
of ’off-the-shelf’ speech recognition. Perhaps the best perfor-
mance with more severe conditions has been reported by [6],
which was based on small-vocabulary, speaker-dependent (SD)
whole-word recognisers built from limited amounts of training
data.

Speech recognition technology has increasingly relied on
large corpora, but until recently only the Nemours database [7]
was commonly available for research into dysarthric ASR. It
contains a total of 814 sentences from 11 male speakers with
mild-to-moderate impairments. In the last five years, however,
this has changed with the appearance of the UAspeech database
[8], which is used here, and TORGO [9]. These corpora are
still small by modern LVCSR standards: the baseline recog-
niser used in this paper was trained on just over 170 hours of
normal speech whereas UAspeech has around 18 hours1 and
the TORGO recordings amount to 23 hours, not all of which is
disordered speech. Nevertheless UAspeech and TORGO make
it possible to apply at least some of the modern training and
adaptation techniques to dysarthric speech, and thus to arrive at
phone-level context-dependent models.

The problem of very limited training data reflects the sit-
uation researchers and clinical scientists face when deploying
ASR systems ’in-the-wild’ for dysarthric users. People who
would like to use speech-driven assistive technologies, but who
have physical disabilities which also affect their speech often
find it difficult to contribute a sufficient amount of data; for
some dysarthric speakers supplying even a couple of minutes
can be very tiring and also lead to distress, especially for people
with degenerative illnesses such as Parkinson’s disease.

The question is then how to best make use of such limited
data. Adaptation techniques, notably maximum likelihood lin-
ear regression (MLLR) [10] and maximum a posteriori (MAP)
[11] are used in LVCSR to tune speaker independent (SI) recog-
nisers to the speech of an individual, resulting in an SD sys-
tem, with a relatively small amount of adaptation data. There
is, however, an assumption in these procedures that the target
speech is not a gross mismatch to that used to train the SI mod-
els. The viability of this assumption for dysarthric data can be
expected to depend on the severity of the condition. In [5], MAP
adaptation was used on UAspeech data with some success and
in section 4, we compare the results of this study to ours. [12]
report encouraging results on TORGO. Their baseline was a
SI monophone model recogniser trained on a mixture of nor-
mal and dysarthric data. Acoustic model adaptation by MLLR

1After leading and trailing silence is cut off as described later in the
paper.
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resulted in a 16% absolute reduction in error rate, which was
somewhat improved by speaker-dependent pronunciation mod-
els.

’In-the-field’ work with ASR can be challenging at the best
of times, but assistive technology users have a very high demand
for reliability. If a system exhibits poor performance it may lead
to the user losing confidence in the approach and he/she start-
ing to question the strategy behind his or her assistive technol-
ogy. It can take a long time for such a user to want to engage
and spend time and effort with another attempt at using ASR
in their home. It is therefore crucial to have informed ways of
establishing - from a small amount of initial enrolment data and
possibly assessments from health professionals - a suitable best
‘operating point’ : a task which will be useful for the user and
for which the ASR will perform well.

The work described here is a two-fold step towards this goal
investigating: i) to what degree does the ‘optimal’ system vary
with the speaker, and ii) how to leverage art ASR algorithms
developed and refined on typical speech. Section 2 gives a de-
scription of the data and acoustic modelling, section 3 presents
results and section 4 presents conclusions.

2. Experimental setup
2.1. Data

The UAspeech database contains synchronised audio and vi-
sual streams and the publicly available part of the recordings
includes speech from 15 speakers (4 female and 11 male). The
speakers were asked to repeat single words from 5 groups: 10
digits, 29 Nato alphabet letters, 19 command words (’delete’,
’enter’ etc.), 100 common words (’the’,’will’ etc.), and 300
uncommon words chosen to be phonetically rich and compli-
mentary to the remaining words (’Copenhagen’,’chambermaid’
etc.). The speakers came into the lab to complete the record-
ings in three blocks, and at each block, all words were repeated
once, except the uncommon words where each block contained
100 unique words. In total, each speaker has produced around
70 minutes of speech. Full details of the corpora can be found
in [8].

The speakers all have a type of disordered, dysarthric
speech, and accompanying the database are percent intelligi-
bly scores as obtained from listening tests with unfamiliar lis-
teners. These range from 4% to 95%. Further meta-data in
the form of intelligibility classes (’very low’, ’low’, ’medium’
and ’high’) are also supplied as well as broad diagnostic classes
(’spastic’,’athetoid’,’mixed’ and ’not diagnosed’ dysarthria).

2.2. Data pre-processing

For the acoustic modelling, the data is encoded in 12-
dimensional PLP features with c0, and with added first and sec-
ond order time derivatives, giving a 39 dimensional feature vec-
tor in total. Due to the way the UAspeech data was recorded
(subjects sitting in front of a laptop on which prompts were
presented at regular intervals), the original audio files in the
database distribution contain silence, and hence this data was
aligned and resegmented allowing for a 0.2 sec silence bound-
ary around each word. This reduced the overall amount of data
from around 60 hours to around 18 hours. In a real system, a
good voice activity detector could provide a similar advantage.

The UAspeech database was recorded using a 7-channel
microphone array. Not all channels have been supplied for
each speaker in the publicly available database; for the work
described here, we have chosen to use all available channels for

Duration Number of words

Org. Rseg. D L C CW UW
Train 39.44 12.44 1,725 4,498 3,307 17,395 17,350
Test 19.34 5.97 878 2,262 1,646 8,765 8,724

Table 1: Duration of data [hours] and number of words in the
training and test partitions after alignment. ‘Org.’ is the origi-
nally distributed files, ‘Rseg.’ is the resegmented files post align-
ment. The word categories are: D: digits, L:Nato alphabet, C:
command words, CW: common words, UW: uncommon words.

each speaker. Following previously published work using the
UAspeech for ASR (e.g. [5]) the data was divided into training
and test data with a 2:1 split, using blocks 1 and 3 for training
and block 2 for testing. Table 1 shows the amount of data avail-
able before and after alignment and resegmentation as well as
the total number of word segments in each word category.

2.3. Acoustic modelling

All Hidden Markov Models (HMMs) were trained using the
maximum likelihood (ML) criterion. State-clustered, triphones
having Gaussian mixture models with 16 components per state
were used.

2.4. Decoding

As the database consists of single words, it was decided to re-
strict the decoding so that only one word could be recognised
per utterance. A uniform language model was used, as well as
a word grammar network containing silence models at the start
and end, and all possible test words in parallel in the middle.

Some initial testing was carried out with a decoding strat-
egy which enabled more than one word to be output in the tran-
script. The results of not controlling the insertions and deletions
was a fall in absolute, mean accuracy over all systems of be-
tween 2 and 4%. Deletion rates stayed <0.4% but the insertion
rates were high at up towards 10%. For dysarthric speakers it
is possible that the prevalence of false starts can lead to higher
insertion rates. Also, it was noted that one of the speakers in
UAspeech has a stammer as well as having dysarthric speech.

3. Results
Our initial work with the UAspeech database concentrated on
establishing the performance of a number of baseline systems
such as a speaker dependent (SD) and a speaker independent
(SI) system. The speaker independent systems are trained using
a ‘round robin’ style where in turn, the data from each speaker
is held out of the training data, a SI1 model is tested on data for
the speaker who was missed out. A second type of SI system
was established; they differ in that this system was trained and
tested on all speakers and subsequently tested with the same
known speakers. This system is called SI2 in the following.

To compare with this, we also decoded the UAspeech test
set with a typical speech model set trained on more than 177
hours of spontaneous meeting data covering an array of ac-
cented, but purely non-disordered speech; called Mtg. The
Mtg models are ML trained models without CMN/CVN and are
trained on the ihmtrain09 data set[13].

The accuracy of these four baseline systems (Mtg, SD, SI1
and SI2) are presented in columns 1 to 4 in table 2. The results
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Intellibibility Speaker
Baseline MAP Domain MAPviaDomain

1 2 3 4 5 6 7 8 9 10 11
Mtg SI1 SI2 SD mapMtg mapSI1 mapSI2 domSI1 domSI2 mvdSI1 mvdSI2

Very low

M04 (2%) 2.1 4.1 6.1 4.9 1.4 6.1 8.3 3.2 3.8 3.1 3.5
F03 (6%) 1.4 5.5 18.2 17.5 8.6 21.4 23.0 2.9 10.1 15.8 13.7
M12 (7%) 0.6 3.2 8.2 9.0 5.8 12.4 11.7 4.1 8.5 10.2 9.9

M01 (17%) 2.1 12.9 23.7 18.9 13.3 29.0 29.8 7.3 16.6 20.7 19.6
M07 (28%) 3.3 20.3 62.7 66.4 34.8 68.2 66.9 10.5 40.3 43.0 40.8

Low F02 (29%) 3.5 7.0 30.7 29.6 24.6 36.1 36.9 6.4 23.4 30.7 30.1
M16 (43%) 13.0 22.2 51.1 53.6 27.8 50.1 49.3 21.9 39.8 29.8 37.3
M05 (58%) 4.9 30.3 45.4 56.4 20.6 49.9 53.4 11.2 30.6 28.5 26.9

Mid M11 (62%) 10.2 30.8 47.4 48.2 23.0 53.9 53.0 17.8 33.1 31.5 29.5
F04 (62%) 22.5 50.2 61.6 53.7 43.3 62.0 65.6 30.8 51.6 49.2 53.5
M09 (86%) 33.6 58.1 79.5 79.1 71.5 82.4 81.5 44.6 70.0 74.7 75.1
M14 (90%) 49.6 68.5 73.6 74.9 74.9 76.6 74.9 61.6 73.1 75.6 77.8

High M10 (93%) 62.1 64.9 83.2 81.2 86.3 87.6 86.2 70.0 85.7 87.2 87.3
M08 (95%) 57.2 64.9 81.2 85.0 76.8 83.6 81.8 68.5 80.6 78.9 78.4
F05 (95%) 70.2 46.6 85.9 85.6 89.1 89.1 89.6 65.0 89.6 90.2 89.2

Average 22.4 29.7 50.6 50.9 40.1 53.9 54.1 28.4 43.8 44.8 44.6

Table 2: Word accuracy rates from baseline and MAP adaptation systems by speakers. Speakers are ordered according to their
intelligibility, presented in parentheses by the speaker id. All systems are tested with the UAspeech test set; the accuracy presented
is the per speaker accuracy. The coloured cells indicates the system with the highest performance for that speaker. System name
descriptions:‘Mtg’: Typical speech meeting models, ‘SI1’: speaker independent models; ‘SI2’ : speaker independent models tested with
known speakers, i.e. training data from the test speaker is present in the training data; ‘SD’: speaker dependent models; ‘mapMtg’:
MAP adaptation of typical speech meeting models; ‘mapSI’: MAP adaptation of SI models; ‘domSI’: domain adaptation mtg models
to SI data; ‘mvdSI’: MAP adaptation via SI domain models.

for each speaker are presented row-wise and ordered according
to the intelligibility rating (given in parentheses); the final row
of the table gives the average accuracy across all speakers. Of
the four baseline systems, the Mtg models are clearly not well
matched (average accuracy of 22.4 %) as no dysarthric speech
has been used during training. The SI1 system shows better per-
formance at 29.7%, but not until any speaker specific speech is
used in the training, does the average accuracy rise significantly.
The SI2 and SD systems have average accuracies of 50.6% and
50.9% respectively. Two observations can be made: the SI2
and SD have used vastly different amounts of data (∼12 hours
vs. ∼1.2 hours), and if the accuracies are compared per speaker
the best-performing model type varies.

The next step was to investigate ways of using MAP adap-
tation with the available data; initially through a simple MAP
adaptation from the Mtg, SI1, and SI2 models. Those results are
presented in table 2; columns 5 (mapMtg), 6 (mapSI1), and 7
(mapSI2)) with average accuracies of 40.1%, 53.9% and 54.1%
respectively. This represents relative increases in accuracies of
around 80% for both the Mtg and SI1 - a very clear benefit of
adding speaker specific data. In contrast, the SI2 to mapSI2
relative improvement is only 7%.

Comparing individual speaker performances for the three
map systems (columns 5, 6, and 7) shows that – especially for
less severely dysarthric speakers – good, >70% accuracies can
be achieved using both typical speech and purely dysarthric
speech as starting points. The idea that perhaps for certain
speakers there would be an advantage gained from harnessing
the statistics present in a large LVCSR database led us to our
final set of experimental systems. For these systems, the start-
ing point was the meeting data models (’Mtg’); these models
were then adapted to the general domain of dysarthric speech
using the UAspeech data (domSI1/domSI2). The final step was

UAspeech Domain

DATA

mapMtg

Maximum

Meeting data
Maximum

MAP

MAP to MAP via
DomainLikelihood (ML)

Likelihood (ML)

mapSI1
mapSI2

mvdSI1
Mtg

mvdSI2

SD
SI1

SI2

domSI2
domSI1

UAspeech data

Figure 1: Illustration of training strategies. ‘ML’: training us-
ing maximum likelihood criterion, ‘MAP’: using MAP adapta-
tion to get SD systems, ‘Domain’: using MAP adaptation to get
SI domain model, ‘mvdSI’: MAP adaptation to SD model via
domain model.

a standard MAP adaptation via this domain models resulting in
an SD model (mvdSI1/mvdSI2). This MAP-via-domain train-
ing and adaptation strategy is illustrated in figure 1.

In table 2 the results of testing each stage in the MAP-via-
domain path is presented in columns 8-11. Overall, the aver-
age recognition accuracies do not compare to the mapSI sys-
tems’ performance, but the average masks a very high degree of
speaker variability. The colour coding in table 2 indicates the
best system for each speaker; it is evident that the best choice
of system varies hugely.

This is analysed in more detail in figure 2, which shows a
grey-scale visualisation of the dependance between severity of
dysarthria and the accuracies from table 2. It gives an impres-
sion of the degree to which there exists an optimal system for
each speaker. Speakers are ordered by increasing intelligibility
down the y-axis, and systems are ordered by increasing aver-
age, normalised accuracy along the x-axis. If we assume that all
speakers were to exhibit a linear dependance between average
system accuracy and their individual performance, the image
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Figure 2: Visualising the correlation between severity of
dysarthria by axis and the performance of systems; image of
normalised accuracies by speakerIDs and system columns from
Table 2. Speakers are ordered by increasing intelligibility and
systems are ordered by increasing average accuracy.

would have increasingly darker grey colours from left to right.
However, this is far from the situation. Take the case of less
severe dysarthric speakers first (bottom rows). It can be seen
on the limited colour variation, that their performances tend to
vary little across systems. In contrast, speakers with severely
disordered speech, display a strong bias towards a few systems
(seen by the darker top, right-hand corner).

4. Discussion and conclusions
This paper has explored the extent to which core LVCSR train-
ing and adaptation algorithms can deal with dysarthric speech.
Through a comparative study using the UAspeech database very
competitive word accuracy rates have been achieved compared
to results published elsewhere. [5] report results on a subset
of 7 UAspeech speakers of which there is a 6 speaker overlap
with the released data used in this study. Their MAP adapta-
tion results are lower than ours in all cases bar for speaker F02.
The results in this paper improve with an average, relative rate
of 34.5% on theirs, ranging between -0.2% (F02) and 97.6%
(M04). Some notable differences which may account for that
difference are the cropping of extra silence from the data prior
to training, and the use of highly optimised clustering, train-
ing and adaptation scripts arising from many years of LVCSR
research on typical speech.

This leads us to conclude, in answer to our opening ques-
tion, that porting LVCSR evolved on typical speech to the do-
main of disordered speech is a viable way of achieving good
results despite the inherent differences. Although the mismatch
in domains is large – exemplified by the poor performance
achieved on the typical speech baseline – MAP estimation can
deal with it to a large extent. For some speakers though, opting
for a pure SD is a better option. In general, the study has shown
how there is no ‘one solution to fit all’. Particular for more
severely dysarthric speakers. In future work, we plan to investi-

gate systematic ways of arriving at the best operating point for
a particular speaker in terms of system configuration. We will
also investigate the effect of doing MLLR adaptation and dis-
criminative training. This research will be supported by a longi-
tudinal study into the use of speech-driven assistive technology
for disabled and elderly users, in the homeService project, part
of the UK EPSRC Programme Grant NST[14].
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