ISCA Archive Interspeech 2010
ISCA Archive Interspeech 2010

Bias considerations for minimum subspace noise tracking

Mahdi Triki, Kees Janse

Speech enhancement schemes rely generally on the knowledge of the noise power spectral density. The estimation of these statistics is particularly a critical issue and a challenging problem under non-stationary noise conditions. With this respect, subspace based approaches have shown to allow for reduced estimation delay and perform a good tracking vs. final misadjustment tradeoff. One key attribute for noise floor tracking is the estimation bias: an overestimation leads to over-suppression and to more speech distortion; while an underestimation leads to a high level of residual noise. The present paper investigates the bias of the subspace-based scheme, and particularly the robustness of the bias compensation factor to the desired speaker characteristics and the input SNR.