In this paper, we present a speech and audio analysis-synthesis method based on a Basilar Membrane (BM) model. The audio signal is represented in this method by the Hilbert envelopes of the responses to complex gammatone filters uniformally spaced on a critical band scale. We show that for speech and audio signals, a perceptually equivalent signal can be reconstructed from the envelopes alone by an iterative procedure that estimates the associated carrier for the envelopes. The rate requirement of the envelope information is reduced by low-pass filtering and sampling, and it is shown that it is possible to recover a signal without audible distortion from the sampled envelopes. This may lead to improved perceptual coding methods.