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Abstract
We present a state-of-the-art system for performing spoken
term detection on continuous telephone speech in multiple lan-
guages. The system compiles a search index from deep word
lattices generated by a large-vocabulary HMM speech recog-
nizer. It estimates word posteriors from the lattices and uses
them to compute a detection threshold that minimizes the ex-
pected value of a user-specified cost function. The system ac-
commodates search terms outside the vocabulary of the speech-
to-text engine by using approximate string matching on induced
phonetic transcripts. Its search index occupies less than 1Mb
per hour of processed speech and it supports sub-second search
times for a corpus of hundreds of hours of audio. This sys-
tem had the highest reported accuracy on the telephone speech
portion of the 2006 NIST Spoken Term Detection evaluation,
achieving 83% of the maximum possible accuracy score in En-
glish.
Index Terms: spoken term detection, keyword spotting, word
spotting, audio indexing

1. Introduction
Finding instances of a particular spoken word or phrase in a cor-
pus of audio recordings is one of the fundamental problems of
automated speech processing. The task has a history stretch-
ing back more than 35 years and has gone under many names,
including “word-spotting,” “audio indexing,” and “spoken term
detection.” Early approaches focused on building custom de-
tectors, either template-based or probabilistic, for prespecified
words [1]. For the past fifteen years, approaches that couple
speech-to-text (STT) technology with traditional text-matching
techniques have been more successful for both predefined and
ad hoc search of a complete corpus [2] [3].

In this paper, we present a multi-lingual spoken term de-
tection system for conversational telephone speech that BBN
Technologies constructed in response to the NIST Spoken Term
Detection (STD) evaluation of 2006 [4]. The system follows
the transcribe-and-text-match paradigm, but uses word lattices
instead of single transcripts as the STT engine output in order to
mitigate transcription errors. It estimates the posterior probabil-
ity of each detection’s correctness directly from the lattices and
uses it to balance false positive and false negative errors in ac-
cordance with user-defined costs. To handle out-of-vocabulary
searches, the system performs an approximate search of a pho-
netic transcript.

Our approach to in-vocabulary searches is most similar to
that followed in [5]. However, we use uncollapsed word lat-
tices to compute word posteriors instead of word confusion net-
works. Both approaches are based on the log-likelihood ratio
scoring method [6], originally presented for N-best hypothesis
lists. Our approach to indexing the full lattices is akin to [7],

but simplified because we are doing term detection, not spoken
document retrieval.

The system performed well in all three languages in the
2006 NIST STD Evaluation. For each language, it had the
highest reported accuracy on the telephone speech portion of
the evaluation corpus, achieving 83% of the maximum possible
score for English. The system also exhibited good operational
characteristics: it executed extremely fast searches based on a
small index, and consumed a moderate amount of computation
for speech-to-text and indexing.

2. Task description
The work presented here addresses the Spoken Term Detection
task defined by NIST for the 2006 STD Evaluation [4].

In the NIST STD task, a system takes a corpus of recorded
speech files and creates an index. It then accepts textual search
terms and uses the index to produce sets of 〈file, time〉 pairs
which it asserts correspond to spoken instances of each term.
Accuracy is judged relative to a time-marked reference tran-
script. A system assertion is considered correct if a correspond-
ing exact orthographic match of the term appears in the refer-
ence transcript within 0.5 seconds of the asserted time.

Terms are presented in the native orthography of the lan-
guage (English, Arabic, or Mandarin) and are neither known
at indexing time nor constrained to come from any particular
closed vocabulary. Terms may be single words or arbitrary
multi-word strings, in which case assertions must exactly match
an uninterrupted word sequence in the reference transcript to be
considered correct.

System accuracy on a given collection of query terms is
measured by a new metric, constructed to reflect one potential
application of an STD system. “Actual Term-Weighted Value”
(ATWV) is defined in [4] as

ATWV = mean

(
Ncorrect(s)
Ntrue(s)

− β ·
Nspurious(s)

T −Ntrue(s)

)
, (1)

where the search term s occurs Ntrue(s) times in the refer-
ence transcript and the system makes Ncorrect(s) correct and
Nspurious(s) incorrect assertions of s. T is the total duration of
the audio corpus in seconds. The parameter β incorporates the
relative costs of misses and false assertions and the prior prob-
abilities of search terms; it was set to 999.9 for the evaluation.
To avoid division by zero, the mean is taken over only the terms
in the set for which Ntrue(s) is positive.

3. System description
The spoken term detection system we constructed has four com-
ponents: a speech-to-text engine, an indexer, a detector, and a
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decider. The speech-to-text engine processes audio files and
outputs word lattices and single-best phonetic transcripts. The
indexer takes these as input and creates an index containing a
precomputed list of candidate detection records for each word in
the speech-to-text lexicon. The index also contains the phonetic
transcripts to accommodate out-of-vocabulary search terms.
The detector loads the index and processes a list of search terms,
generating a sorted, scored list of detection records for each
term. Finally, the decider takes the lists of candidate detections
and the cost parameter β and sets a per-term score threshold for
making yes/no decisions.

We used the same overall system design for English, Levan-
tine, and Mandarin, and customized for each condition only the
STT engine, the text-to-phoneme engine for OOV terms, and
some tuned system parameters.
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Figure 1: BBN Spoken Term Detection System architecture.

3.1. Recognition

The first stage of the system uses a traditional speech-to-text en-
gine. It automatically segments the audio corpus into utterances
and produces for each one a word lattice and the phoneme tran-
script corresponding to the single best path through that lattice.
The lattice arcs are annotated with acoustic and language model
probabilities from the final pass of adapted decoding.

We tried two different English configurations of the BBN
Byblos STT recognizer. Our baseline was the configuration de-
scribed in [8]. We also experimented with the configuration
described in [9], which runs approximately 10 times faster but
has a higher word error rate. In each case, we trained the acous-
tic models on the 2300-hour EARS RT04 CTS training corpus
[10] and the language models on approximately 1 billion words
of data available from the Linguistic Data Consortium (LDC)
and the University of Washington (UW)[11].

For the Mandarin and Levantine systems, we used the con-
figuration of Byblos described in [12], but simplified to omit
system combination. We trained the Mandarin system using
roughly 260 hours of CTS audio and 240 million words of tex-
tual data available from LDC and UW. We trained the Lev-
antine acoustic models using 57 hours of speech compiled by
LDC, and trained the language model from the transcripts of
250 hours of data. We did not have a large phonetic dictio-
nary for Arabic, so we relied on a “grapheme-as-phoneme”
approach, in which words get a pronunciation equal to their
spelling, plus hand-crafted phonetic spellings for 100 high fre-
quency words [12].

3.2. Indexing

Following recognition, our system processes the collection of
word lattices and precomputes a set of detection candidates for
each word w1, w2, . . . , wL in the STT lexicon. For each in-
stance of wi in a given lattice, the system estimates the poste-
rior probability of correctness to be the fraction of the total lat-

tice likelihood that flows through the edge corresponding to that
instance of wi. It then clusters instances of wi that occupy ap-
proximately the same time interval and sums their posteriors to
get an overall posterior for a single representative detection can-
didate for wi. The detection candidates from all lattices are ac-
cumulated into L independent lists. The indexing module sorts
each list by posterior and constructs a persistent index compris-
ing the lists and a hash map from word wi to the corresponding
list. The lattices themselves are discarded.

No indexing is performed on the STT phonetic transcripts,
which are passed on to the retrieval module unchanged.

3.3. Detection

After recognition and indexing are complete, the system is
ready to process ad hoc search terms. The detection module
produces a list of scored candidates in response to a search.
For single-word in-vocabulary terms, it simply retrieves the pre-
computed list of candidate detections from the index. For query
terms consisting of multiple in-vocabulary words, it retrieves
each word list individually, then finds strings of single-word de-
tections that occur in the correct order and without long tempo-
ral gaps. To any such string, the system assigns a proxy poste-
rior probability equal to the minimum posterior of the compo-
nent word detections.

This handling of multi-word terms is approximate in two
ways. Since we have discarded the original lattices, it is pos-
sible to reconstruct a string which never actually occurred as a
complete hypothesis in the lattice. And for those cases where
the string did occur in the lattice, the fraction of lattice likeli-
hood flowing through the corresponding path may be less than
the minimum fraction flowing through its constituent words. In
practice, we found that these flaws did not hurt accuracy (see
Section 4).

For query terms including even a single out-of-vocabulary
word, the system follows a different detection logic. It hypoth-
esizes a pronunciation of each OOV query term, then invokes
the TRE agrep package [13] to search for local alignments be-
tween the pronounced query and the 1-best phonetic transcripts
that have small edit distance. For English, we used the t2p text-
to-phoneme package [14]; for Mandarin, we used a dictionary-
based character-to-phoneme scheme; for Levantine, we used a
direct grapheme-to-phoneme mapping.

3.4. Decision

The STD task defined in Section 2 scores systems based on a bi-
nary decision of which candidate detections to assert and which
not. In general, if an evaluation metric assigns marginal benefit
B to each correct assertion and marginal cost C to each incor-
rect assertion, then a system should assert only those candidates
whose probability of correctness p implies that the expected
value pB − (1 − p)C is positive. For the ATWV metric (1),
B = 1/Ntrue and C = β/(T −Ntrue), giving the threshold

p >
Ntrue

T/β + β−1
β

Ntrue
, (2)

where β−1
β

≈ 1, and T/β ≈ 10 for three hours of audio. Since
Ntrue(s) is unknown, the system estimates it as the sum of the
posterior estimates for all candidate detections of s anywhere
in the corpus, scaled by a term-independent learned factor to
account for occurrences that were pruned before lattice genera-
tion.
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For out-of-vocabulary terms, our system offers no reason-
able proxy for posterior probability, so we abandon (2). Instead,
it asserts the best k candidates whose phonetic edit distance is
less than some fraction f of the query pronunciation length,
where f and k are term-independent thresholds we optimized
on development data.

4. Experiments
We performed development experiments and analysis using En-
glish and Levantine Corpora provided by NIST and a Mandarin
corpus prepared by BBN. We also participated in the NIST STD
2006 Evaluation, and report NIST’s scoring of our system’s per-
formance on the evaluation data (see Table 1). We worked only
on the conversational telephone speech (CTS) portion of each
data set. NIST supported two versions of the Levantine task,
one including diacritical markings and one ignoring them; we
worked only on the non-diacritized task.

4.1. Audio corpora and query sets

The English CTS development corpus provided by NIST com-
prised three hours of conversations from the Fisher English col-
lection; the foreign language development corpora comprised
only one hour of data from the Fisher Arabic and Mandarin
Callfriend collections. The evaluation corpora were of the same
length as the development sets and mostly drawn from the same
sources (in Mandarin, the NIST evaluation set was drawn from
HKUST; for consistency, BBN worked with an HKUST-based
development corpus constructed in-house).

For each audio corpus, NIST also provided a list of approx-
imately 1000 query terms, constructed using the audio’s refer-
ence transcript as a guide but also including some out-of-corpus
queries. The majority of queries were single words; about 10%
were 3- or 4-word phrases. English query terms from the de-
velopment set included ‘yeah,’ ‘point,’ ‘Baghdad,’ ‘organizing
committee,’ and ‘relief pitcher Mariano Rivera.’

4.2. Results

Table 1 shows the accuracy, size, and speed of our system for
both the development and evaluation data sets. These were the
highest CTS evaluation results reported by NIST in each lan-
guage; our two English systems were the two highest scorers.

Lattices Searching STT lattice output instead of 1-best word
transcripts offers greater recall, but risks generating more false
alarms. Table 2 compares our baseline system with one that
indexes 1-best transcripts with posteriors derived from an N-
best list via a general linear model [15]. While the number of
candidate words in the index rises dramatically for lattices, false
positives are kept in check by accurate word posteriors.

Development NIST STD Eval
System ATWV WER ATWV speed size

English 0.852 14.9% 0.833 43.0 1.0
Eng faster 0.766 18.1% 0.761 2.7 0.5
Mandarin 0.343 31.7% 0.381 15.0 0.8
Levantine 0.410 43.3% 0.347 9.5 1.4

Table 1: Results on development data and from NIST 2006 STD
Evaluation. Speed of recognition and indexing in CPU hours
per audio hour; size of index in Mb per audio hour. Average
search times were under 0.01s per term.

English Eng faster Mandarin Levantine
ATWV:

1-best 0.754 0.711 0.228 0.242
lattice 0.852 0.766 0.343 0.410

words per hour:
1-best 10,713 10,607 8,667 7,089
lattice 86,422 30,713 67,503 153,689

Table 2: Gains from searching lattices versus 1-best transcripts.
ATWV improves markedly because words outside the 1-best may
still be likely enough to warrant asserting them.

Multi-word terms In Section 3.3 we described an approxi-
mate method for detecting multi-word query terms and comput-
ing their posterior probabilities. Table 3 compares this approxi-
mate method to the exact search, which asserts only a complete
occurrence of a multi-word term in an STT lattice and assigns
it a posterior probability equal to the fraction of the lattice like-
lihood that flows through that path.

The approximate method uses a much smaller index than the
exact method. We were initially surprised to find that ATWV
actually increased slightly when using the “weakest-link” pos-
terior approximation. However, analysis showed that approx-
imate matching sometimes recovered from decoding errors in
which all words of a phrase were recognized individually, but
did not appear as an unbroken hypothesis in the lattice.

English Mandarin Levantine
Search ATWV size ATWV size ATWV size
exact 0.829 33 0.323 11 0.363 51
approx 0.839 0.9 0.335 0.8 0.376 1.5

Table 3: Approximate multi-word phrase searches (Section 3.3)
allow a smaller index with no apparent loss of accuracy. ATWV
on development data; size of index in Mb per hour of audio.

Pipeline attrition Flaws in STT lattices, in ranking of detec-
tions, and in thresholding all contribute to a final ATWV less
than 1.0. We used two additional metrics to diagnose where our
system lost accuracy.

For each query term s, the decision procedure takes a list of
potential detections ordered by estimated posterior probability
and picks some cutoff threshold θ(s) in an attempt to maxi-
mize ATWV. There is, of course, some optimal threshold θO(s)
which truly does maximize ATWV for the given ordered list
of candidate detections. We refer to the score associated with
θO(s) as the Oracular Term-Weighted Value, or OTWV.

Even the decision induced by θO(s) may include misses or
false alarms, when some incorrect detection has higher esti-
mated posterior than some correct detection. If we ignore the
penalty for false alarms, we can see the full value of all true
hits present in the lattices and phonetic transcripts. We call the
result the no-FA score.

System no-FA OTWV ATWV
English 0.957 0.902 0.852
Eng faster 0.874 0.811 0.766
Mandarin 0.554 0.440 0.343
Levantine 0.672 0.524 0.410

Table 4: Value with perfect ordering and thresholding (no-FA),
with oracle thresholding of our ordering (OTWV), and with our
actual ordering and thresholding (ATWV).
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Table 4 shows our system’s accuracy on development data
as measured by all three scores. Reading across the rows, one
can see the remaining available value after the speech recogni-
tion, detection ranking, and thresholding stages.

IV versus OOV accuracy Our IV processing is very differ-
ent from our OOV processing. Detection accuracy for out-of-
vocabulary terms was uneven across languages and between de-
velopment and evaluation data. The system was most success-
ful on Levantine (see Table 5): the OOV ATWV was one-third
of the IV ATWV on development data, while on the evaluation
data the OOV ATWV was better than the IV ATWV. By con-
trast, in Mandarin we were unable to find a global threshold on
phonetic edit distance that produced a positive ATWV for OOV
terms, and so the system asserted nothing for these queries. For
English, there are too few OOV terms in the query sets to gain
any insight.

Levantine Data Set IV OOV all
Development 0.441 0.162 0.410
Eval 0.345 0.364 0.347

Table 5: ATWV for in-vocabulary vs. out-of-vocabulary terms.

5. Discussion
Much of the power of our system comes from asserting hy-
potheses that appear only in the STT lattices and not in the
1-best transcript (Table 2). To avoid being swamped by false
alarms, the system needs an accurate confidence estimate on
these sub-maximal hypotheses. In order to achieve good re-
sults, we found that we needed to tune the relative weights of the
acoustic and language model likelihoods as usual, and also tune
an overall scaling factor applied to the combined log-likelihood.
This overall scaling does not alter the rankings of competing hy-
potheses for an utterance, but changes how smoothly confidence
is distributed across hypotheses.

The “decider” component of our system is the only one spe-
cific to the ATWV metric defined by NIST. We found it critical
to have a term-specific decision threshold rather than a global
cutoff for all terms. Because the benefit of correctly finding
a term is inversely proportional to the frequency of that term,
the ATWV metric heavily emphasizes recall of rare terms. This
emphasis is so pronounced that our system will assert the best
single candidate even when its posterior is extremely low. The
emphasis on rare terms also affects how ATWV scales with cor-
pus size: uniquely-occurring terms often remain unique as the
corpus grows, and at the same time more uniquely-occurring
terms are introduced. The result is a higher ATWV for a large
corpus than for the same audio and query terms split into sev-
eral smaller corpora. None of these characteristics of ATWV
cause problems for our system, as the decider logic handles the
maximization correctly.

The development and evaluation audio corpora were quite
small: 3 hours for English, 1 hour each for Mandarin and Levan-
tine (though there were 1000 queries for each language). While
we believe that the accuracy measured on these sets is predic-
tive of accuracy on large corpora, we are less sanguine about
extrapolating speed measurements to thousands of hours. Us-
ing standard UNIX tools we benchmarked our retrieval for an
in-vocabulary search at less than 0.01 seconds per term for a
3 hour corpus, with much of that time spent on overhead pro-
cessing that will not scale with the size of the corpus. At this
point, all we can confidently project is that the system can ac-

commodate many hundreds of hours of audio and still deliver
sub-second in-vocabulary search. Our out-of-vocabulary search
operated linearly on the data. Application of standard indexing
techniques should speed it considerably.

The overall ATWV results for English are far superior to
those in Mandarin or Levantine. While much of the gap reflects
the difference in underlying STT word error rate, some is caused
by problems in foreign language transcription. The evaluation
criteria for correct detection included exact orthographic match
(including word breaks) between a target term and the refer-
ence transcript. However, the Levantine data contains numerous
cases where the same spoken word is transcribed with different
orthographies (even ignoring diacritics), and the Mandarin data
contains widespread errors and inconsistencies in word segmen-
tation. To a smaller extent, these problems are also present in
the English transcription, primarily in hyphenation and abbre-
viation conventions.
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