
Improvements to Bucket Box Intersection Algorithm for Fast GMM
Computation in Embedded Speech Recognition Systems

Min Tang, Aravind Ganapathiraju

Conversay
Redmond, WA 98052, USA

{mtang, aganapat}@conversay.com

Abstract
Real-time performance is a very important goal for embedded
speech recognition systems, where the evaluation of likelihoods
for Gaussian mixture models (GMM) usually dominates the com-
putation of a continuous density hidden Markov model (CDHMM)
based system. The Bucket Box Intersection (BBI) algorithm is
an optimization technique that uses a K-Dimensional binary tree
to speed up the score computation of GMM without significantly
hurting the recognition accuracy. In this paper, we propose three
improvements to the traditional BBI algorithm. First, we define
the optimal dividing hyper-plane as the plane that generates min-
imum expected number of mixture evaluations instead of the me-
dian hyper-plane. The size of BBI tree is reduced largely because
of that. Second, we refine the location of dividing plane as the one
that has the same Mahalanobis distance to the closest dividing mix-
ture pair, instead of the boundary of Gaussian box. By doing this,
we are able to improve recognition accuracy. Finally, we introduce
the dividing planes which run across two dimensions to boost the
range of dividing plane candidates and thus bring more speed-ups.
We evaluated these techniques using Conversay’s speech engine
CASSI in 2 different domains. The experimental results of new
BBI algorithm show significant performance improvement over
traditional BBI algorithm. Compared to the baseline system with
no BBI algorithm implementation, we were able to speed up Gaus-
sian computations by 50% with a less than 5% relative increase in
word error rate.
Index Terms: embedded speech recognition, fast Gaussian com-
putation, Bucket Box Intersection algorithm.

1. Introduction
Embedded speech recognition systems have two important goals:
real-time performance and low resource usage. For the first goal,
it is well known that the evaluation of likelihoods for Gaussian
mixture models (GMM) usually dominates the computations in a
continuous density hidden Markov model (CDHMM) based sys-
tem. Typically, these computations can take anywhere from 30%-
70% of the overall recognition time. Therefore, a lot of tech-
niques have been proposed to speed up the GMM computation
procedure [1]. For example, [2] uses Best Mixture Prediction and
Feature Component Reordering (FCR) in a partial distance elimi-
nation (PDE) framework to reduce computational time in nearest-
neighbor based search without losing any accuracy. In [3], context-
independent (CI) GMM-based GMM selection was proposed to
reduce GMM computation by only applying context-dependent
(CD) GMM computation to the GMMs whose corresponding CI
scores are higher than a beam. [4] uses Vector-Quantization (VQ)

based Gaussian Selection (GS) to approximate the full score by
only computing parts of full Gaussians that were considered to
dominate the likelihood computation. And in [5], the approach of
Bucket Box Intersection (BBI) algorithm was proposed to approx-
imate the Gaussian score by only computing some of the most sig-
nificant Gaussians which are dynamically determined based on a
pre-computed k-dimensional feature space partitioning binary tree.
Since BBI algorithm only optimizes the data organization of the
model, it has the potential to combine with other fast GMM evalu-
ation techniques. Furthermore, because BBI is a general technique
to speed up nearest-neighbor search, it can be used in any appli-
cation where vector quantization coding is required, for example,
Vector-Quantization based Gaussian Selection.

In this paper, we propose three improvements to the traditional
BBI algorithm [5, 6]. First, we define the optimal hyper-plane
as the plane that generates minimum expected number of mix-
ture evaluations instead of the median hyper-plane. This optimal
hyper-plane determination criteria reduces the BBI tree by a large
amount, resulting in low resource usage. Second, we optimize the
location of the dividing plane as the one that has the same Ma-
halanobis distance to the closest dividing mixture pair, instead of
one the two boundary of Gaussian box. By doing this, we are able
to improve recognition accuracy without additional memory and
computation cost. Finally, we introduce cross-dimensional divid-
ing plane which gives bigger range to dividing plane candidates
and thus gives us more speed-up. Evaluation is done using Con-
versay’s embedded speech engine – CASSI in 2 domains – Au-
rora noisy environment digits recognition and Samsung cellphone
command-and-control recognition. The experimental results show
significant performance improvement over traditional BBI algo-
rithm. Compared to traditional BBI algorithm, we were able to
reduce approximation errors by 50% with the trees 1/4 the size of
those in the traditional BBI algorithm.

2. Bucket Box Intersection Algorithm
BBI algorithm reduces the feature search space by using a
pre-computed K-dimensional binary partitioning tree in nearest-
neighbor based search framework.

2.1. Nearest-Neighbor Approximation Framework

The likelihood of one Gaussian mixture model λ for a given fea-
ture vector �xt can be computed as:

L(�xt|λ) =
MX

m=1

pm
exp{− 1

2
(�xt − �μm)

′
Σ−1

m (�xt − �μm)}
(2π)D/2|Σm|1/2

(1)

617 September 17-21, Pittsburgh, Pennsylvania

INTERSPEECH 2006 - ICSLP

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

6-
22

3

where M is the number of mixtures in λ, D is the feature vector di-
mension, pm, �μm and Σm represent the mixture weight, mean and
covariance matrix of the mth mixture. Usually diagonal covari-
ances are used instead of full covariance matrix for computational
and data sparity reasons.

The computation is expensive since we have to do M times
exponential operations. In order to save computation load, we use
log-domain approximation instead, which is:

log(L(xt|λ)) ≈ M
max
m=1

log(pm
exp{− 1

2
(xt − μm)

′
Σ−1

m (xt − μm)}
(2π)D/2|Σm|1/2

)

(2)
In practice, in order to save model loading time and computation
time, we use the following equation instead of (2):

log(L(�xt|λ)) ≈ M
max
m=1

{Cm − ΣD
d=1vmd(xtd − μmd)

2} (3)

Where Cm is the pre-computed constant for each mixture, μmd is
the dth dimensional mean of the mth mixture, vmd = 1/(2σ2

md),
and σ2

md is the dth dimensional diagonal covariance of the mth

mixture.
This is the nearest-neighbor approximation framework. Under

this framework, GMM computation can be regarded as finding the
nearest mixture to a given feature vector.

2.2. Gaussian Box

For the mth mixture, the hyper-ellipsoid region in the feature
space where equation (2) gives higher likelihood scores than a
given threshold T is called the Gaussian region of mixture m. The
box with boundary hyperplanes orthogonal to the coordinate axes
that completely includes the Gaussian region is called the Gaussian
Box. In practice instead of an absolute threshold, relative threshold
(by ignoring Cm) is used:

−vmd(xtd − μmd)
2 ≥ log(T) (4)

X1

X2

Gaussian Box

Gaussian

Figure 1: Gaussian Box

2.3. BBI algorithm using K-Dimensional Partitioning Tree

K-Dimensional (K-d) tree is the generalization of one dimensional
binary tree. At each nonterminal node, the feature space is split
into two half spaces by a hyper-plane orthogonal to one of the K
coordinate axes. Each leaf defines a region which is the intersec-
tion of all the sub-spaces generated along the path from root node
to the leaf node. Therefore a K-d tree partitions the feature space
into several disjoint rectangular regions (called buckets) and re-
duces the search space from full Gaussian evaluation to only the

Gaussians whose boxes intersect with the bucket containing the
given feature vector.

BBI algorithm optimizes the K-d tree by minimizing the ex-
pected number of bucket-box intersections given the Gaussian
boxes for an error threshold T .

3. Improvements to traditional BBI algorithm
3.1. Optimal criteria for dividing plane determination

The traditional BBI algorithm tends to build up a balanced binary
tree by choosing the dividing hyper-plane as the one that has the
minimum number of bucket box intersections with the restraint
of having equal number of bucket box intersections at each side.
However the resulting tree, although balanced, is not optimal (it is
not the tree that has the minimum expected number of bucket-box
intersections).

H1 H2

1

2
3

4

Figure 2: Example of dividing plane determination

As seen from Fig.2, the dividing plane H2 with 3 Gaussian
boxes on the left and 1 Gaussian box on the right is obviously
optimal. However the traditional BBI algorithm chooses H1 as the
dividing plane because H1 generates a balanced tree. This will
results in a larger binary tree because it needs at least one more
node to divide Gaussian box 4 and the other boxes.

To fix this problem, we propose to define the optimal dividing
hyper-plane as the one that generates minimum expected number
of mixture evaluations:

(K∗, H∗) = argmin
k,h

PLNL + PRNR (5)

where h is the hyper-plane on the kth dimension, PL and NL are
the probability and number of Gaussian boxes on the left side of
h, PR and NR are the probability and number of Gaussian boxes
on the right side of h. Since the given feature vector is not nec-
essarily generated by the current Gaussian mixture model under
investigation, there is no information about the a-priori probabil-
ity. Therefore, without loss of generality, we can assume that each
mixture is equally likely. Under this assumption, the optimal cri-
teria can be simplified as:

(K∗, H∗) = argmin
k,h

NL
2 +NR

2 (6)

3.2. Optimal location of dividing plane

The criteria for dividing plane determination is used to find out
between which two gaussian boxes we should make the cut. How-

618

INTERSPEECH 2006 - ICSLP

ever the location of the cut is still unknown. The traditional BBI
algorithm uses the boundaries of Gaussian boxes as the locations
of dividing hyper-planes (H1 or H2 in the example shown in Fig
3. This, although simple to train, adds bias to the BBI tree and
introduces potential errors to recognition. Here we propose to de-
fine the location of the dividing plane as the one that has the same
Mahalanobis distance to the closest dividing mixture pair.

H1 H* H2

Figure 3: Optimal location of dividing plane

Suppose the optimal dividing hyper-plane lies between mix-
ture i and mixture j in the kth dimension, assuming μik < μjk,
the plane that has the same likelihoods (Mahalanobis distance) to
these two mixtures can be computed from:

vik(H
∗ − μik)

2 = vjk(H
∗ − μjk)

2 = −log(T) (7)

therefore the location of optimal diving hyper-plane is,

H∗ = μik +

q
vjk
vik

1 +
q

vjk
vik

(μjk − μik) (8)

where μik, μjk represent the kth dimensional mean of mixtures i,
j, vik = 1/(2σ2

ik), vjk = 1/(2σ2
jk), and σ2

ik, σ2
jk represent the

kth dimensional covariance of mixtures i, j.

3.3. Cross-dimensional dividing plane

The traditional BBI algorithm only considers the hyper-planes that
are orthogonal to one of the K coordinate axes as the candidates
of dividing planes. Here we extend the candidates pool of dividing
planes to the hyper-planes that run across two dimensions. This
exponentially increases the size of candidates pool. For simplicity,
currently we only consider two special cross-planes: y = x + b
and y = −x+ b.

Suppose the optimal dividing hyper-plane lies between mix-
ture 1 and mixture 2 and it runs across ith and jth dimension,

For y = x + b, without loss of generality, assuming μ1j −
μ2j > μ1i − μ2i, the optimized location of dividing plane can be
computed as:

B∗ = μ1j − μ1i −
r

v1i + v1j
v1i · v1j

·
p

−logT ∗
1 (9)

where
p

−logT ∗
1 =

(μ1j − μ2j)− (μ1i − μ2i)q
v1i+v1j
v1i·v1j +

q
v2i+v2j
v2i·v2j

(10)

For y = −x + b, without loss of generality, assuming μ1i +
μ1j > μ2i + μ2j , the optimized location of dividing plane can be
computed as:

B∗ = μ1j + μ1i −
r

v1i + v1j
v1i · v1j

·
p

−logT ∗
2 (11)

where
p

−logT ∗
2 =

(μ1i + μ1j)− (μ2i + μ2j)q
v1i+v1j
v1i·v1j +

q
v2i+v2j
v2i·v2j

(12)

In both cases, this restraint has to be satisfied: −logT ∗ ≥
−logT . And to prevent error increase due to over-shrinkage of
search space, we require each leaf of the BBI tree to have no less
than 4 Gaussians attached.

4. Experiments
We evaluate the three techniques in 2 recognition domains using
CASSI – the Conversay’s embedded speech engine based on con-
tinuous density hidden Markov model (CDHMM). The acoustic
models are state-clustered using decision-tree. We have tried both
global BBI tree strategy and state-based BBI tree strategy. The lat-
ter one showed much better performance than the first one. So in
the following experiments, all BBI algorithms are implemented on
state-based, which means, there is one pre-computed BBI tree for
each GMM. In order to restrict the size of BBI tree, the maximum
allowable depth of BBI tree is set to 8. For each BBI implementa-
tion configuration, we run 7 experiments with relative threshold T
ranges from 0.3 to 0.6 with step 0.05.

4.1. Aurora Digits Recognition

In this task, the acoustic model (401 senones, average 21.5 mix-
tures per GMM) is trained from 8116 sentences with SNR value
ranges from 5 to 20 and clean. The test set consists of total 7007
sentences with SNR value ranges from -5 to 20 and clean, with
1001 sentences under each environment.

28 28.5 29 29.5 30 30.5

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Word Error Rate (%)

R
ea

l T
im

e
F

ac
to

r
(x

R
T

)

A: baseline (no BBI)
B: traditional BBI
C: B + optimal criteria
D: C + optimal location
E: D + cross−dimensional division plane

5% relative more errors line
(compared to baseline system
with no BBI)

Figure 4: Word error rate V.S. recognition time for Aurora.

Fig.4 shows the curve of recognition errors V.S. running time
for Aurora task. We can see from this figure that with all three
improvements implemented (E), we achieve lower errors with less
running time than the traditional BBI (B). This figure also shows

619

INTERSPEECH 2006 - ICSLP

that compared with baseline system with no BBI (A) we can
achieve 50% running time reduction with less than 5% relative
error increase.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

BBI Threshold

R
el

at
iv

e
B

B
I T

re
e

si
ze

B: traditional BBI
C: B + optimal criteria
D: C + optimal location
E: D + cross−dimensional division plane

Figure 5: Relative BBI tree sizes for Aurora

Fig.5 shows the relative sizes of BBI trees for different BBI
implementations. We can see that, by using optimal criteria for
dividing hyper-plane determination, the size of BBI tree (C, D and
E) was reduced by a large amount (only 1/4 of the traditional BBI
tree (B)), which is very important for embedded systems with
limited resources.

4.2. Samsung Command-and-Control Recognition

Samsung task is a 175-word cellphone command & control recog-
nition task. The acoustic model (2689 senones, average 17.6 mix-
tures per GMM) is trained from 19356 sentences. The test set has
4840 sentences.

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Word Error Rate (%)

R
ea

l T
im

e
F

ac
to

r
(x

R
T

)

A: baseline (no BBI)
B: traditional BBI
C: B + optimal criteria
D: C + optimal location
E: D + cross−dimensional division plane

5% relative more errors line
(compared with baseline system
with no BBI)

Figure 6: Word error rate V.S. recognition time for Samsung.

From Fig.6 we can see that with new BBI algorithm (E) we
achieve a lower error rate with less running time than the tradi-
tional BBI (B). Compared to the baseline system with no BBI (A)
we speed up the GMM computation by 50% with less than 5%
relative error increase. We also notice some randomness in the

graphs. The heuristic that each leaf node has at least 4 Gaussians
is the probable cause for this behavior. As the search space shrinks
this heuristic becomes more effective resulting in ambiguous di-
viding plane candidates.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BBI Threshold

R
el

at
iv

e
B

B
I T

re
e

si
ze

B: traditional BBI
C: B + optimal criteria
D: C + optimal location
E: D + cross−dimensional division plane

Figure 7: Relative BBI tree sizes for Samsung

Fig.7 shows the relative sizes of BBI trees for different BBI
implementations. By using optimal criteria for dividing hyper-
plane determination, the size of new BBI tree (C, D and E) was
only one fourth of the traditional BBI tree (B).

5. Conclusion
In this paper, we describe three techniques to refine the traditional
BBI algorithm. Experimental results show that they give signif-
icant improvements. In the future, we will extend the cross-2-
dimensional dividing plane to cross-n-dimensional dividing plane,
which should be able to achieve higher speedup.

6. References
[1] A. Chan, J. Sherwan, R. Mosur, and A. I. Rudnicky, “Four-

level categorization scheme of fast GMM computation tech-
niques in large vocabulary continuous speech recognition sys-
tems,” in IEEE ICSLP’04, 2004.

[2] Bryan L. Pellom, Ruhi Sarikaya, and John H. L. Hansen, “Fast
likelihood computation in nearest-neighbor based search for-
continuous speech recognition,” IEEE Signal Processing Let-
ters, vol. 8, no. 8, pp. 221–224, 2001.

[3] A. Lee, T. Kawahara, and K. Shikano, “Gaussian mix-
ture selection using context-independent HMM,” in IEEE
ICASSP’01, 2001, vol. 1, pp. 69–72.

[4] M.J.F. Gales, K.M. Knill, and S.J. Young, “State-based gaus-
sian selection in large vocabulary continuous speech recogni-
tion using HMMs,” IEEE Transactions on Speech and Audio
Processing, vol. 7, no. 2, pp. 152–161, 1999.

[5] J. Fritsch and I. Rogina, “The Bucket Box Intersection (BBI)
algorithm for fast approximative evaluation of diagonal mix-
ture gaussians,” in IEEE ICASSP’96, 1996, vol. 2, pp. 837–
840.

[6] V. Ramasubramanian and Kuldip K. Paliwal, “Fast k-
dimensional tree algorithms for nearest neighbor search with
application to vector quantization coding,” IEEE Transactions
on Signal Processing, vol. 40, no. 3, pp. 518–531, 1992.

620

INTERSPEECH 2006 - ICSLP

