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Abstract

The aim of this paper is to reduce the effect of mismatch
in recording conditions due to the transmission channel and
recording device, using conditional dependencies of prosodic
and spectral envelope features. The developed system is based
on a Bayesian network framework which combines statistical
models of the pitch and spectral envelope features. This ap-
proach is applied to forensic automatic speaker recognition,
where mismatched recording conditions pose a serious prob-
lem to the accurate estimation of the strength of voice evidence.
The method is evaluated using a forensic speaker recognition
database that contains three different recording conditions typ-
ical to forensic tasks. The performance of the system is evalu-
ated using both speaker verification as well as forensic speaker
recognition measures.

1. Introduction

Human recognition of speakers is affected by recording and en-
vironmental conditions, and human judgments on the identity of
speakers become less reliable in adverse conditions [1]. Differ-
ences in the transmission channel, recording devices, and en-
vironmental conditions can introduce distortion in speech that
is the main source of mismatch in recording conditions. Au-
tomatic speaker recognition systems are also vulnerable to this
problem of channel mismatch which is a significant problem in
applications involving modern communication networks, such
as forensic speaker recognition.

Conditions typical to forensic cases, in which recordings
are made by the police (anonymous calls and wiretapping), can-
not be controlled and are far from ideal for automatic speaker
recognition. Mismatch due to differences in the phone handset
and the transmission channel, and background noise, can affect
the estimation of the strength of evidence in forensic speaker
recognition [2].

The Gaussian mixture models (GMMs) have been success-
fully applied to text-independent speaker recognition systems
where they have been used to model the spectral envelope [3].
The effect of channel distortions and noise on the performance
of such systems is a serious concern. Although prosodic fea-
tures are known to be less affected by these impairments than
spectral envelope features, interest in using these features had
diminished over the years, as these features alone did not give
the accuracy required by automatic systems. Prosodic features
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are worth re-examining for speaker recognition systems, in the
context of mismatch due to channel distortions. Mismatch prob-
lems are of increasing significance in tasks such as forensic au-
tomatic speaker recognition.

In this paper, we present a method using Bayesian networks
[4, 5] to combine prosodic features with those of the spectral en-
velope in order to reduce the effects of channel mismatch. The
performance of the system is evaluated using both speaker ver-
ification as well as forensic speaker recognition measures. We
compare the performance of the GMM-based system using only
spectral envelope features, with a Bayesian network approach,
capable of taking advantage of the dependencies between the
pitch and spectral envelope features. We evaluate both systems
using data from a forensic speaker recognition database con-
taining three different channel conditions.

2. The Bayesian Network based system

The Bayesian network (BN) used in this paper, is built on the
same principles as the one presented in [6]. The main idea is
to build conditional models (for the pitch o as well as for the
spectral envelope features &) given an auxiliary variable, the
voicing status s.

The voicing status s is introduced in order to better capture
the variations and to better model the distributions of voiced
and unvoiced features. At time ¢, the voicing status can either
be s; = 1 (voiced) or s; = 2 (unvoiced).

Spectral envelope features aim at modeling the envelope of
the spectrum, excluding, as much as possible, the characteris-
tics of harmonics that are related to the pitch. Therefore, the
pitch and the spectral envelope carry complementary and uncor-
related information, and one can assume that given the voicing
status (s¢), Z+ and g; are conditionally independent, i.e.:

p(ft|9t78t) :p(ft|5t)- (D

The Bayesian network associated to the features at time ¢ is
shown in Figure 1.

2.1. The Conditional Models

Two Gaussian mixture models (GMMs) are used for represent-
ing the spectral envelope features. One of them (A7) models
the voiced part of speech while the second (\3) models the un-



Figure 1: Bayesian network associated to the voicing status s,
the pitch o and the spectral envelope & at time .

voiced part:
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where, @ = 1,2 represents the voicing status and m =
1,..., M;°; M being the number of mixtures associated to each
GMM.

The pitch modeling also depends on the voicing status. In
voiced zones, one GMM is used for modeling the statistical

properties of the pitch values, i.e., p(g|]s = 1) is defined by
a GMM with parameters

X = {ch, i, O} 3)

where m = 1, ..., M{?; M} being the number of mixtures used
for modeling the distribution of the pitch.

In unvoiced regions, a value for the pitch does not physi-
cally exist; nevertheless, a table of discrete probabilities can be
still used to represent it. If we set ox = 0 in these regions, the
probability p(¢ = 0]s = 2) will always equal 1. The pitch
can therefore be characterized by p(¢ = 0O|s = 2) = 1 and
p(e #0[s =2) =0.

Finally, the voicing status s probabilities are defined by two
weights, w; and wo, that represent the probabilities of being
in a voiced zone, p(s = 1), and the probability of being in a
unvoiced zone, p(s = 2), respectively.

The complete set of training data that belongs to an utter-
ance, O = {m,..,nr}, where n; = {0¢,Te}, 1 = 1,...L,
and the sequence of states, S = {s1,...,sr}, are therefore
completely modeled by the Bayesian network (represented in
Figure 1) with parameters A:

p(s=1) = wi,
p(Z|s = 1) defined by A7,
plols =1) defined by A%, and
ple=0[s=2)=1 ; ple#0[s=2)=0. @

2.2. Training

The sequence of state S is extracted at the same time as the pitch
estimates with the reliable voiced/unvoiced decision algorithm
presented in [7]. Vectors & are then separated into to voiced and
unvoiced groups. The multivariate probability density function
of the vectors in each group is trained using the Expectation-
Maximization (EM) algorithm. The parameters for the model
of the pitch in voiced zones are also calculated with the EM
algorithm.

2.3. Likelihood Estimation

Let O = {m,...,nr} be a test sequence and S = {s1,...,s7}
the corresponding voicing status sequence.

Following [6], the likelihood measure, p(O|S, A), is equal
to

where X is the set of spectral envelope feature vectors and P
the set of pitch values.

X can be further separated into Xy, the voiced part and
Xu, the unvoiced part.

p(O[8, ) = p(Xv|AT) - p(Xu|AS) - p(Pv[A?) 5 (6)

where Py represents the set of pitch estimates. One can see that
the likelihood measure is the multiplication of likelihoods ob-
tained separately for the voiced and unvoiced parts of the spec-
tral envelope and the pitch.

3. Description of database used in
experiments

In this study, the EPFL-IPSC0O3 database was used. This
database for forensic speaker recognition is being recorded by
the Institut de Police Scientifique (IPS), University of Lausanne,
and the Signal Processing Institute, Swiss Federal Institute of
Technology, Lausanne (EPFL). It contains speech from over 60
male speakers in three different recording conditions and sev-
eral different controlled and uncontrolled speaking modes. The
male speakers, aged between 18 and 50, are all university edu-
cated individuals speaking in Swiss French. The recording con-
ditions of this database include speech transmitted through a
public switched telephone network (PSTN), global system for
mobile communications (GSM) network, and directly recorded
in a calling room using a digital recorder.

These recordings were made in controlled conditions in a
quiet room. The two telephones used were a telephone con-
nected to a fixed line and a mobile telephone. The cues were
presented to the subjects in the form of a printed handout (text
and images). A SONY electret condenser microphone (CAR-
DIO ECM-23) was placed at a distance of about 30 cm from
the mouth of the speaker, and was connected to SONY portable
digital recorder (ICD-MS1).

In order to study the effects of the telephone channel on
the voice, all the telephone calls were made from the recording
room to a remotely located ISDN server. The ISDN transmis-
sion standard used was the European ISDN (DSS1), and an an-
swering machine application was used to record the telephone
calls.

Six segments of speech for 20 speakers in PSTN, GSM
and direct room recordings, three of which were used for the
mock questioned recordings (between 15 and 40 seconds each)
and three longer recordings were used as reference recordings
(between 30 seconds and 180 seconds) for the mock suspected
speaker. Reference data from 10 speakers in three different con-
ditions was used to train universal background models (UBM)
for each condition. The test data chosen contained spontaneous
and read speech, as well as simulated dialogue.

4. Experiments

For these experiments, all sources of signal were downsampled
to 8 kHz. 10 speakers of the database, described in the previous
section, were used to build background models for each condi-
tion, and 20 other speakers were taken to be mock suspects for
the purpose of performing the speaker recognition. Approxi-
mately two minutes of speech per speaker were used to train the



background model, and one minute of speech was used to adapt
the client models. Six different utterances of approximately 30
seconds each, were used for the tests. In the background model,
512 mixtures were used for the spectral envelope GMM and
64 mixtures for the pitch GMM. The results, presented in this
section aim at comparing the performances of the Bayesian net-
work (BN) system proposed here with the classical GMM-UBM
based system [3]. The spectral envelope features used in the ex-
periments are the Mel-frequency cepstral coefficients (MFCCs).

In the first experiment, the training data for the background
model as well as the client models is speech recorded through a
PSTN. Mismatched channel conditions were simulated using a)
speech recorded through a PSTN, b) speech recorded through a
cellular-telephone (GSM) and c) speech recorded in the calling
room (Room). Figure 2 and Table 1 show the equal error rates
(EERs) of a classical GMM-UBM based speaker verification
system compared to the Bayesian network system.

Table 1: EERs when the training data is speech recorded
through PSTN

Speech used | GMM-UBM | BN system
for Tests EER [%] EER [%]
PSTN 4.8 33
GSM 423 31.9
Room 37.5 22.5
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Figure 2: The performances of a classical GMM-UBM based
speaker verification system as compared to the Bayesian net-
work system. The training data is speech recorded through
PSTN

In the second experiment, the background model as well as
the client models are trained with speech recorded in the call-
ing room. The tests for mismatch are performed, as in the first
experiment, with all the three kinds of speech sources. Figure 3
and Table 2 show the EERs obtained.

As we can see in Figs 2 and 3, all EERs are reduced when
incorporating the pitch. The improvement is small in matched
conditions (PSTN vs. PSTN, or Room vs. Room), where the
spectral envelope features are not affected, but is significant in

Table 2: EERs when the training data is speech recorded in the
calling room.

Speech used | GMM-UBM | BN System
for Tests EER [%] EER [%]
Room 1.8 1.0
GSM 22.8 18.9
PSTN 25.8 20.4
30 T T T
1 GMM-UBM
Il BN System
® 201
2
©
o
S
w
©
>
O 10f
ol [ Tomm

Room GSM PSTN
Type of Data for Tests

Figure 3: The performances of the proposed system as com-
pared to a classical GMM-UBM system. The training data is
speech recorded in the calling room.

mismatched conditions (all other comparisons), where the chan-
nel degrades the spectral envelope features.

5. Forensic speaker recognition evaluation

In forensic speaker recognition, there are cases where only one
recording of the suspect is available due to the nature of the
investigation, e.g., when it is not possible to have additional
recordings of the suspect’s voice, as it may alert him to the
fact that he is being investigated, it is often necessary to per-
form one-to-one comparisons of the questioned recording and
the recordings of the suspect’s voice. The log-likelihood score
obtained on comparing the questioned recording and suspected
speaker’s voice is called the evidence score (£). The strength
of this evidence, expressed by the likelihood ratio, is evaluated
with respect to two competing hypotheses: Hy - two recordings
have the same source, and H; - two recordings have different
sources [8].

The framework is similar to the speaker verification do-
main where the task is to compare two recordings and conclude
whether they have the same or different sources. Normally, a
threshold is used in the verification domain to decide whether
the two recordings come from the same source. In the forensic
domain, it is not acceptable to use such a threshold, and mea-
sures such as the detection error tradeoff (DET) curves and the
equal error rates (EER) (presented in the previous section) can
only be used to measure the performance of the speaker verifi-
cation systems.
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Figure 4: Tippett plots PSTN-Room

o
©
[
i
2
[
1
1
[
]
:
[

o
®
-

o
N
-
P

o
o
i e

Estimated Probability
o
o

04T GMM-UBM H,
03k GMM-UBM H,
= BN System H
0.2} 4 0
_____ BN System H1
0.1
0 -6 ‘—4 ‘-2 0 2- 4
10 10 10 10 10 10

Likelihood Ratio

Figure 5: Tippett plots PSTN-GSM

The performance of forensic speaker recognition systems
can be represented using probability distribution plots such as
the Tippett plots P(LR(H;) > LR)) (Figures 4 and 5). The
integration of the probability distribution of L Rs, which can be
used to represent how many cases are above a given value of
likelihood ratio with respect to each hypothesis, is called the
Tippett Plot. This representation has been used in the inter-
pretation of the results of forensic DNA analysis [9]. The ex-
tent of separation between the curves of the Hy and H; score
distributions is an indication of how well the system differen-
tiates between cases where the suspect is indeed the source of
the questioned recording and cases where the suspect is not the
source of the questioned recording in terms of likelihood ratios.

In Figure 4 we observe that when the BN system is applied
to mismatched conditions (using PSTN recording for training
and room recording for testing), there is a considerable increase
in the separation between the two curves, indicating a better
performance. Similarly, in Figure 5), when the PSTN recording
is used for training and the GSM recording for testing, there is
an improvement in the performance, although it is not as sig-
nificant as in the case presented in Figure 4. The mismatch due

to PSTN vs. GSM training and testing conditions has a more
pronounced effect on the strength of evidence than PSTN vs.
Room training and testing conditions.

6. Conclusions

The Bayesian network approach presented in this paper has
proved its capacity to exploit the information carried by the ad-
ditional features (pitch and voicing status) in order to improve
the recognition scores in mismatched conditions. The pitch, car-
rying information about the speaker’s identity, has already been
proved to be strongly robust to noise [6], and here we show
that is also robust to channel distortions. Convolutional mod-
ifications in speech such as the ones introduced by PSTN or
GSM channels may severely affect spectral envelope features
but have almost no influence on the pitch. Incorporating these
prosodic features, using a Bayesian network, has been shown to
improve the performance of both speaker verification and foren-
sic speaker recognition systems in mismatched training and test-
ing conditions.
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