37 /1CSLP.2002-64

«
€«

10.214

ISCA Archive

http://www.isca-speech.org/archive

7! International Conference on Spoken
Language Processing [ICSLP2002]
Denver, Colorado, USA
September 16-20, 2002

INCREMENTAL ON-LINE FEATURE SPACE MLLR ADAPTATION FOR
TELEPHONY SPEECH RECOGNITION

Yongzin Li, Hakan Erdogan, Yuqing Gao, Etienne Marcheret

IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY10598, USA

{yongxin,erdogan,yuqing,etiennem }@us.ibm.com

ABSTRACT

In this paper, we present a method for incremental on-line
adaptation based on feature space Maximum Likelihood Linear
Regression (FMLLR) for telephony speech recognition applica-
tions. We explain how to incorporate a feature space MLLR
transform into a stack decoder and perform on-line adapta-
tion. The issues discussed are as follows: collecting adapta-
tion data on-line and in real time; mapping adaptation data
from previous feature space to the present feature space; and
smoothing adaptation statistics with initial statistics based on
original acoustical model to achieve stability. Testing results
on various systems demonstrate that on-line incremental FM-
LLR adaptation could be an effective and stable method when
the adaptation statistics are mapped and smoothed.

1. INTRODUCTION

With speech recognition systems focusing more on telephony
applications, it is imperative to develop an on-line speaker
adaptation suited for telephony speech recognition applica-
tions. Speaker adaptation in spoken dialog systems is chal-
lenging, because there is limited adaptation data available in a
telephony application. In a conversational telephony system, it
is possible to have five or more utterances from a single speaker,
enabling us to perform speaker adaptation. The goal of this
work is to develop practical techniques to perform adaptation
with small amounts of speaker dependent data in real time.

MLLR is the most efficient adaptation method with small
amounts of adaptation data, when effective smoothing is em-
ployed. Usually MLLR is applied to adapt the means of the
Gaussians in an HMM model, in which case we call it model
space MLLR. Since model space MLLR adapts all means even
with sparse data, the computational burden might exceed the
resources available to a real time telephony system. In ad-
dition, some speech recognition systems employ fast labeling
approximations that might require to be updated with the new
set of models. For example, in IBM ViaVoice, the means and
variances of the Gaussians are quantized into bins, enabling
some terms in the likelihood computation to be precomputed.
This speeds up the overall Gaussian likelihood calculations.
Re-quantization after model space MLLR adaptation becomes
unacceptable in ViaVoice for a real time system. Although
some of these problems could be avoided, by for example adapt-
ing the quantized values directly [4], we would like to focus on
feature space MLLR (or FMLLR) to have the least headaches.
In FMLLR, a transform matrix is applied to the speaker de-
pendent feature vectors to bring them closer to the speaker
independent models. As opposed to model space MLLR, the
main benefit of FMLLR is that once the transform matrix is
computed, it can be applied immediately to following utter-
ance without any delay or extra computation. However, in
FMLLR, it is slightly more computationally complex to com-
pute the transform itself.

In this work we apply a single feature space transforma-
tion matrix. In a standard telephony application the speech
data from a single speaker is sparse, making it difficult to com-
pute multiple transforms. Another reason we do not apply
multiple transform FMLLR is that with multiple feature space
transforms, there will be multiple feature streams, bringing
additional significant computation.

As for incremental on-line FMLLR adaption for telephony
applications, we have to address issues such as: efficient col-
lection of un-supervised adaptation data; incrementally inte-
grating adaptation data derived from different feature spaces;
reducing iterations to compute FMLLR; and smoothing adap-
tation data for robustness. The above concerns are covered
in following sections. Section 2 briefly reviews the feature
space MLLR algorithm in [1]. We discuss how to collect un-
supervised adaptation data on-line and in real time in section
3. Section 4 discusses why and how to map adaptation data be-
tween feature spaces. In Section 5, a smoothing scheme similar
to DLLR[3] is proposed and testing results are presented. In
Section 6 we discuss the details of implementation and present
testing results showing improvement in accuracy on various
test sets. We draw conclusions and discuss further directions
in Section 7.

2. FEATURE SPACE MAXIMUM LIKELITHOOD
LINEAR REGRESSION

In this section, we quickly review the algorithm to compute
the FMLLR transform. Following notation in [1], A is the
FMLLR linear transform on the feature space. O(7) is the

observation in the original feature space at time 7 and O(7) is
the observation vector in transformed feature space.

O(7) = AO(7) + b, (1)

b being the bias term. Denoting & as the extended observation
vector, & = [1,0(7)]T. W is the extended transformation ma-
trix on the extended observation, W = [b7, AT]T. With these
notations, Equation 1 is expressed as

O(r) = WE(r).)

The objective function, or, the likelihood of the trans-
formed observation vectors, is

Blog(piwiT) — % Z (wiG’,'wiT — Qwik?) 3)
i=1

where we ignore terms independent of W; n is the dimension
of feature space; 8 = ZTA:ZI Zle ~Ym (7) is the total count;
subindex m indicates states or Gaussians, depending on the
context; v (7) is the posterior probability of being in state m
at time 7; w; is the i-th row of the expanded transformation

matrix W; p; is the cofactor [0, ¢, ..
and

-y Cinly €ij = cof(Ay);

Gi= 3 o 3 mEED), @)

ot =1
M 1 T
k=30 o (e (5)
m=1 ? T=1

In this paper, G; and k; are referred to as adaptation data or
FMLLR data.

Because of the term log(p;wl) = log(det A), a closed-form
solution for W does not exist. A row by row iteration method
is proposed in [1]. We describe it briefly as follows. Set

a=piG; 'l (6)

b=piG; 'k (7)

Then solve the following quadratic equation on a.
ao® +ba—B=0 (8)

There are two solutions for a. In order to maximize the objec-
tive function, we select « such that

o = (=b++/b>+4aB) ifb>0)
| & (-b— /B2 +4aB) ifb<O

Finally
w; = <Ozpq; + kl)GZI (10)

is the approximating solution for i-th row of W. By doing
this for all the rows we will find a better W. By iterating the
process we will approximate the optimal solution of W.

The number of iterations necessary for W to converge is
highly dependent on the data. In testing, it converges usually
after 30 iterations, while in some cases, we also observe that it
does not converge even after 100 iterations. In each iteration,
we need to compute the cofactors of W, which is equivalent to
finding the inverse of the matrix W. With respect to compu-
tational cost, it is the most expensive part of each iteration.
Fortunately, the dimension of feature space is usually around
40 and so the inversion of W does not take long. Nevertheless,
we want to reduce the number of iterations. This is addressed
further in Section 4 and 5.

3. COLLECTING UNSUPERVISED FMLLR
STATISTICS ON-LINE

Ideally, the on-line adaptation should be accomplished seam-
lessly without noticeable latency. The first step in the process
is to collect labeled adaptation data. IBM ViaVoice is a stack
decoder and we do not have the strict alignment information in
decoding as in a Viterbi decoder. Thus after we finish decoding
a short phrase, we run a Viterbi alignment of the speech data
with the decoded text. After the alignment, we know which
state an observation vector belongs to. We spread the counts
over the individual Gaussians which comprise a state. That is
how we obtain the posterior probability vm (7). We can then
accumulate the statistics GG; and k; as defined in Equation 4
and Equation 5

In IBM ViaVoice, the state likelihoods for each frame is
available at the end of decoding. We reuse the state likelihoods
to run Viterbi alignment. Because of this, the resources needed
to run Viterbi is significantly reduced. In the entire process,
the most computationally expensive step is accumulating G;

and k;. Taking a 40-dim feature space, for each frame, we
have to do rank one updates on 40 matrices of 41 x 41. This
requires excessive number of multiplications, even if we use the
symmetry of G;. One way to speed up accumulating is pooling
together those observations belonging to the same state and
accumulating only once for all of them. In fact, for faster speed,
we use ESSL, a computing package offered by IBM with all of
the necessary linear algebra routines to compute the FMLLR
matrix.

As for an un-supervised adaptation, we must address meth-
ods to avoid bad data. Particularly, in telephony systems, the
quality of speech varies significantly. We implemented an algo-
rithm to find confidence scores for the decoded words [6] and
use it to reject weak hypotheses. A trade-off needs to be made
between losing good data and allowing corrupted data to en-
ter into adaptation. On this issue, we are conservative and we
tune the rejection threshold high. Rejection is done on a word
basis, therefore only those words with low confidence score are
rejected, while other words in the same phrase are retained.

In telephony speech recognition, due to a variety of rea-
sons, it is very likely to get long periods of silence, which es-
sentially is channel noise. Thus, silence data is helpful to adapt
to the channel. However, if the adaptation data is dominated
by silence, the new transform could be biased towards adapt-
ing silence only, which is not desirable. With this concern in
mind, we attempt to keep the balance between silence data
and speech data. In testing, we got improvement of accuracy
by balancing data from silence and speech.

4. MAPPING THE STATISTICS TO NEW
FEATURE SPACES

The scenario of incremental adaptation is that after decoding
of each typically short utterance, the statistics are collected, a
new transformation matrix is computed and applied immedi-
ately for the next decoding. This process is continued incre-
mentally after each utterance. We would like to accumulate
all statistics from the speaker. However, a potential problem
is that they come from different feature spaces. It does not
make much sense to directly accumulate the data from differ-
ent spaces.

There are two ways to solve this problem. One is to keep
all the data in the original space and compute a new FMLLR
transformation matrix from the original feature space to the
new feature space. To do this, we will need either to keep using
feature vectors in the original feature space when we accumu-
late G; and k;, or, to map new data back into the original fea-
ture space with an inverse transform. Both of the approaches
are cumbersome. Another approach is to map adaptation data
of previous feature space to present feature space then com-
pute FMLLR transform from the latest feature space to a new
feature space. For this purpose, we do the following update
each time we compute a new FMLLR transformation matrix

A and bias b. Denote
- 1 0
W = < b A > (11)

G =wawT (12)
ki =Wk (13)

then

With the above update, G, and k; are equivalent to some data
computed on the observations in the transformed feature space,
with the assumption that the alignment remains unchanged.

Now the transform and bias term are computed to trans-
form the latest feature space to another feature space. Suppose
the previous transform and bias are Ag and bg, then we have
to update them as follows.

A= AA (14)

b= Aby+b (15)

The transformation matrix and bias applied to the original
feature space should be A and b. A .

For very sparse adaptation data, mapping G; and k; does
not make much of a difference. In case there is more data avail-
able, it could hurt the accuracy if the data is not mapped. We
will show results in Section 6 on this issue. A nice side effect of
mapping data is that it reduces the number of iterations dras-
tically. With the above update, MLLR transform is computed
from latest feature space to a new feature space. The MLLR
transform will be close to the identity matrix and therefore it
takes less iterations to converge.

5. SMOOTHING

In practise, it is impossible to reject corrupted adaptation data
completely. In some cases, an FMLLR transform could result
in disaster. We test the on-line FMLLR on a numeric-alphabet
application. The grammar is simple with just digits and En-
glish letters. The acoustic model size is 30K Gaussians. Each
utterance is as long as sixteen digits or letters, equivalent to
five hundred frames. We tested on 50 speakers and on an av-
erage of 40 utterances per speaker. The second column is the
decoding word error rates without smoothing.

Without Smoothing | With Smoothing
baseline 2.3 2.3
One Utt. 12.38 2.13
Three Utt. 2.36 1.89
Incr. 1.82 1.76

Table 1: Comparison on smoothing

One Utt. means the first utterance is used as adaptation
data to compute the FMLLR transform and then apply it to
all the remaining utterances. We also tried using the first three
utterances as adaptation data. Imcr. means we keep collect-
ing adaptation data all the time, at the end of each utterance,
a new MLLR transformation matrix is computed and applied
to the next decoding. Obviously, in this testing, FMLLR is
not stable. The breaking down of the accuracy on individual
speakers shows a few speakers got seriously hurt and their er-
ror rate increased a lot. To avoid these errors, smoothing is
required.

There might be different ways to conduct smoothing. One
is linearly interpolating the FMLLR matrix with identity ma-
trix as a post processing step. We did not take this approach
because in the testing mentioned above, for some speakers,
with the first utterance as adaptation data, the MLLR matrix
computed could be far from the identity matrix. To make such
a matrix more reasonable by interpolating it with an identity
matrix, we would have to use a big weight on the identity ma-
trix. Doing that offsets the benefit of MLLR dramatically.

In the context of model space MLLR, one of the cost effec-
tive and successful smoothing techniques is discounted likeli-
hood linear regression (DLLR). Another method is called max-
imum aposteriori linear regression (MAPLR) which introduces

a prior term in the objective function. MAPLR requires find-
ing a prior distribution for the transform matrix and could
be very expensive to compute. In this paper, we use a tech-
nique similar to DLLR because of the ease of use and simple
computation. In DLLR, the adaptation statistics are interpo-
lated with speaker independent statistics to avoid overtraining
[3]. For FMLLR, we perform a similar technique that we de-
scribe below. We start accumulating our statistics not from
zero, but from terms that depend on the speaker independent
models. This method has the nice effect of having the influ-
ence of speaker independent statistics reduce as we get more
and more adaptation data. Assuming we observe some feature
vectors drawn from the acoustic model. For a Gaussian g,
with mean fm = (m,1,.- .,,um,n)T and diagonal covariance
S = (afmh e, afnm), if a random variable {X;}{_, is drawn
from g,,, then by definition,

T
T— o0
t=1
T
. 2 _ 2
Th:;noo Z(Xt,z - ,Um,l) =Om,; (17)
t=1

Now pretend X is a sequence of real observations and denote
& = [1,X4]T. Following Equation 5,

2
Um,i

T
1
ki =Y 5 pma X{ (18)
t=1

taking the average on t and letting T — oo, we have k; with
respect to g, as

1 1
: an_ﬂ,<um> (19)

K

Similarly, for G;, first we compute G; corresponding to X¢,

1
Gi o= Y &t
t=1 """
T
_ 1 Z 1 x7r
T 02, X XoX/)

t=1

Taking the average on ¢ and letting 7" — oo, GG; with respect
to gm is

1 1 ur
Gi m = "

where X, = diag(ofn,l,...,afnyn). Now sum up G; and k;
corresponding to all Gaussian g,, with weight p.,, we get the
initial FMLLR statistics.

a 1 1 T
i
Gi = 'm
;p o, < fm Hanbin + Sm >
a 1
Hm i
ki = m -
le T (Hm)

By tuning p = Z;:I Pm, we can control the smoothing weight.
The greater p, the more stable FMLLR is, but less effective.

In testing, we found p = 1000 works well. In case the priors of
states are unknown we can just apply a uniform weight.

With the above initial G; and k;, the algorithm cited in
Section 2 from [1] generates an identity matrix at first iteration.
This confirms the way we compute the initial data is correct.

The third column of Table 1 is the word error rate with
smoothing. Comparing it with the results without smoothing,
we see that smoothing is beneficial.

6. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In the implementation, we accumulate adaptation data on top
of the initial G; and k; as computed in Section 5. When
an additional 5% more data is collected, FMLLR adaptation
starts. A new transformation matrix is computed and applied
to next decoding. With the updating described in Section 4
and smoothing in Section 5, the average iteration numbers for
FMLLR to converge is approximately 5. Without mapping
and smoothing, the number of iterations it takes is somewhere
between 50 and 100 or even more in some cases.

We test the adaptation on a dictation system of 40K Gaus-
sians with clean testing data from ten speakers, 1K words per
speaker. The dictation system is not a telephony application
but we include it here since it is informative from an algorithm
point of view, how much improvement we can get with this
adaptation approach with clean, sufficient data.

Baseline | 1/4 Incr. | HalfIncr. | Incr. | NoMap.
9.67 8.97 8.76 8.67 9.05

Table 2: Testing on dictation

In Table 2, Incr. means on-line adaptation is done incre-
mentally all the way for each speaker on a 1000-word-dictation.
Half.Incr. means the incremental adaptation is stopped at
midway and FMLLR transform is fixed and applied to the rest
testing of the same speaker. 1/4 Incr. means only the first
quart of test data is used for incremental adaptation. All the
above are done with mapping data except the last column.
NoMap. means it is done without mapping adaptation data as
in Section 4. With an equivalent amount of adaptation data
and the same testing data, we can reduce error rate by 20%
with 20 model space MLLR transform adaptations. With only
one feature space transform, we have seen 10% improvement.
It also shows that, mapping the adaptation data is helpful on
the accuracy.

We have also tested the method on a telephony dialog sys-
tem in the air travel domain. It is a medium vocabulary sys-
tem with more than 40K Gaussians. Besides the smoothing
scheme of Section 5, we use a threshold, called minimal-counts
(referred as M in Table 3) to stabilize the adaptation. FMLLR
adaptation is kicked off only when adaptation data exceeds
minimal-counts. It helps for the error rate but not as much
as the smoothing scheme of Section 5. In the table, P refers
to the weight given to the smoothing term. A count of 1000
represents a total of 10 seconds of speech data. In the testing
showed below, we use both M and P. We tested the case P = 0,
observed degrading of accuracy on some test sets and so we set
P = 500 or higher. The column Overall is the word-based
average of test 1 through 4. In testl, there are 74 speakers
and 53 words per speaker on average. There are less words per
speaker on other tests. The results show that smoothing makes
adaptation more robust without the minimal count threshold.

testl | test2 | test3 | testd | overall

baseline 19.80 | 16.73 | 11.12 | 25.63 | 19.12

M=0,P=1000 17.81 | 15.62 | 10.48 | 23.52 | 18.44
M=0,P=500 18.07 | 16.35 | 9.90 | 23.95 | 18.57
M=500,P=1000 | 17.81 | 15.62 | 9.88 | 23.81 | 18.41
M=500,P=500 18.07 | 16.35 | 9.30 | 23.95 | 1847
M=1000,P=1000 | 17.81 | 15.62 | 10.48 | 23.52 | 18.44
M=1000,P=500 | 18.07 | 16.35 | 9.30 | 23.68 | 18.34

Table 3: FMLLR performance applied to DARPA communi-
cator.

7. CONCLUSION AND DISCUSSION

Testing on different systems demonstrates incremental on-line
FMLLR adaptation is effective. It reduces the word error rate
4% to 10% in a large vocabulary system depending on the
amount of adaptation data. Even more reduction is observed
on a small vocabulary system. Mapping adaptation data from
the previous feature space to the present feature space helps
on stability and speed.

There might be numerous arguments on how to handle in-
sufficient adaptation data. One approach is computing a diag-
onal transformation matrix instead of a full matrix. We tried
this approach but we did not see any gain in the case of a small
amount of adaptation data. We use the smoothing technique
of Section 5 to handle insufficiency of data.

As for any un-supervised adaptation, we need a better re-
jection scheme using better confidence scores. We plan to con-
tinue working on this issue in the future.

As reported in [7], the gains from FMLLR and standard
model space MLLR could be more or less additive. As future
work, we are planning to implement a fast model space MLLR,
compare it with FMLLR or even try running it together with
FMLLR adaptation.

REFERENCES

[1] M. J. F. Gales, “Maximum Likelihood Linear Transforma-
tions for HMM-Based Speech Recognition”, Technical Re-
port, Cambridge University Engineering Department, May
97.

[2] Y. Gao, Y. Li and M. Picheny, “Maximum Rank Likelihood
as an Objective function for Speech Recognition”, ICSLP
2000.

[3] W. Byrne and A. Gunawardana, “Discounted Likelihood
Linear Regression for rapid adaptation”, EUROSPEECH
1999.

[4] J. Huang and M. Padmanabhan, “Fast Adaptation of
Band-Quantized Speech Decoding System”, submitted to
Special Issue on Speech Technologies for Mobile and
Portable Devices, IEEE Trans. on Speech and Audio Pro-
cessing.

[5] C. J. Legetter and P. C. Woodland, “Maximal Likelihood
Linear Regression for Speaker Adaptation of Continuous
density HMM’s”, Computer Speech and Language, vol. 9,
no. 2, 171-186.

[6] B. Maison and R. Gopinath, “Robust Confidence Anno-
tation and Rejection for Continuous Speech Recognition”,
SPEECH L4, ICASSP 2001.

[7] G. Saon, G. Zweig and M. Padmanabhan, “Linear Feature
Space Projections for Speaker Adaptation”, ICASSP 2001.

