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ABSTRACT

This paper proposes a technique for compensating
both static and dynamic parameters of continuous
mixture density HMM to make it robust to noise.
The technique is based on cepstral parameter genera-
tion from HMM using dynamic parameters. The gen-
erated cepstral vector sequences of speech and noise
are combined to yield noisy speech cepstral vector se-
quence, and the dynamic parameters are calculated
from the obtained cepstral vector sequence. Model
parameters for noisy speech HMM are obtained using
the statistics of the noisy speech parameter sequences.
We use the mixture transition probability for estimat-
ing the parameters of the compensated model. Exper-
imental results show the effectiveness of the proposed
technique in the noisy speech recognition.

1. INTRODUCTION

The mismatch between training and testing condi-
tions causes serious performance degradation in speech
recognition systems. In general, retraining with the
matched condition is the most effective way to im-
prove the performance. However, it requires a high
computational cost, and, moreover, it is not always
possible due to lack of sufficient data for retraining.

Parallel model combination (PMC) [1] is one of
the model compensation techniques that adapt HMM
trained on clean speech data to make it robust to ad-
ditive noise without requiring any data in the noisy
environment. Although PMC with the Log-Normal
approximation is computationally efficient and effec-
tive, the Log-Normal approximation is not always an
appropriate assumption particularly in low SNR con-
ditions. Moreover, in the original PMC formulation,
the dynamic parameters are restricted to those cal-
culated using simple differences. There have been
proposed several approaches to overcome limitations
of PMC [2]-[4].

We have proposed an alternative approach to com-
pensation of both static and dynamic parameters of
single Gaussian HMMs [5]. The approach is based
on cepstral parameter generation from HMM using
dynamic parameters [6],[7]. The generated cepstral

vector sequences of speech and noise are combined
to yield a noisy speech cepstral vector sequence, and
the dynamic parameters are directly calculated from
the obtained cepstral vector sequence. Compensated
mean for the noisy speech HMM are obtained using
the statistics of the noisy speech parameter sequences.
In this paper, we extend this framework to the contin-
uous mixture HMM case. To estimate the parameters
of the noisy speech model, we introduce the mixture
transition probability.

The idea of using a series of speech and noise ob-
servations generated from the speech and noise mod-
els is similar to that of Data-driven PMC (DPMC) [2].
However, in our approach, the generated cepstral se-
quence is a realistic speech parameter sequence which
enables us to synthesize a high quality speech [8]. As
a result, it is expected that we can obtain good esti-
mates of the parameters including dynamic features
for the noisy speech model. In addition, the dynamic
parameters are not restricted to those calculated us-
ing simple differences.

2. HMM-BASED PARAMETER
GENERATION AND COMPENSATION

2.1. ML-based cepstral parameter generation
from continuous HMM

Let O = {01, 0,...,0r} be a speech parameter vec-
tor sequence. We assume that the speech parameter
vector o; at frame ¢ consists of the static feature vec-
tor c¢, e.g., cepstral or mel-cepstral coefficient vec-
tor, and its dynamic feature vectors Aec;, A2cy, i.e.,
delta and delta-delta cepstral coefficient vectors, re-
spectively. That is, o; = [c},Ac}, A?c})’, where -/
denotes matrix transpose and

L1 Lo
Acs = Y wrepyr, Neg= 2 w7(.2)Act+T. (1)
r=—L1 T=—L;

For a given continuous HMM A, we can obtain a
vector sequence O that maximizes P(Q, O|A,T) with
respect to the state sequence Q@ = {¢1,¢2,...,¢r}
and C = {e1,¢s,...,cr} with the constraints of (1)
[6],[7]. If the state sequence Q is explicitly known,
the optimal cepstral vector sequence C is determined
by solving a set of linear equations. Even though the
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Figure 1: HMM-based parameter generation and
compensation (PGC) [5].

state sequence is unknown, the optimal sequence is
obtained using an efficient iterative algorithm.

2.2. Compensation for single Gaussian HMMs

An overview of the HMM-based parameter generation
and compensation (PGC) technique [5] is presented
in Fig. 1. It is assumed that speech and noise are in-
dependent and additive. It is also assumed that each
state of HMMs has single Gaussian output distribu-
tion.

For a given speech HMM, we generate cepstral
vector sequence {cy,...,cr} using the ML-based pa-
rameter generation algorithm mentioned in 2.1. From
the generated cepstral vector sequence, we next ob-
tain power spectrum sequence {51, ..., S} by trans-
forming the cepstrum vector ¢; into linear power spec-
tral domain at each frame ¢. Similarly, we also gen-
erate noise power spectrum sequence {Ny,..., Nr}.
Then we synthesize noisy speech spectrum sequence
{S1,..., 57} by adding speech and noise spectra with
a gain matching term g at each frame, and obtain
noisy speech cepstral vector sequence {é;,...,¢ér} by
transforming the noisy power spectrum into cepstral
domain. From the obtained ¢;, dynamic parameters
Aé; and A?¢; are calculated using (1) and then noisy
speech observation vector sequence {01,...,07} are
composed.

Compensated mean vector ft;, of the noisy speech
HMM output distribution in state k is given by

By, = py, + (g, — my,) (2)

where g, is the mean vector of the clean speech HMM
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Figure 2: Parameter generation from mixture com-
ponents of HMM.

output distribution in the state k, my and 1y, are the
sample means of the generated clean and noisy speech
parameter vectors within the state k, respectively.

3. PGC FOR CONTINUOUS MIXTURE
DENSITY HMMS

In this section, we extend the PGC framework to
the continuous mixture density HMM case. Since
the sample mean of generated observation vectors are
used for parameter compensation, it is desirable to
obtain sufficient samples to get reliable estimation.
For this purpose, we introduce transition probability
between mixture components by considering the mix-
ture components to be VQ codewords. The VQ-code
transition probability was used for incorporating con-
straints into speaker independent HMM to adapt it
to an input speaker [9]. Here we use this for estimat-
ing the mean vectors of the compensated model from
the statistics of generated parameter sequences.

We consider the Gaussian mixture distribution to
be a VQ codebook with mixture densities. Let vy be
a mixture component of any state output distribution
having mean g, and d(os, p;,) be a distortion mea-
sure. We encode training speech parameter vector o
by the index I; of the codeword in such a way that

I, = argmin d(oy, 11,). (3)

Then the mixture transition probability ag;, from vy,
to v; is defined by

ar; = P(Iyy1 = jlI; = k). (4)

For the case of tied-mixture HMM or equivalently
semi-continuous HMM, the transition probability is
easily obtained using a set of shared mixture distribu-
tions as a VQ codebook. For the general continuous
HMM case, VQ classification is done based on Viterbi



segmentation. In this case, the mixture components
vx and v; can belong to the different states.

Using the transition probability of the mixture
components, the compensation procedure is stated as
follows:

1) At the end of the training stage of clean speech
HMMs, obtain codeword index sequences for training
data. From the obtained index sequences, calculate
the transition probability between any possible pair
of mixture components by

K
akj = Nk]’ 221 Nki (5)
i=
where Np; is the number of transitions from the code-
word index I to I; and K is the VQ codebook size,
i.e., the number of the mixture components.

2) For a set of mixture components {v;,vx,v;},
generate cepstrum vector sequence {c;} with the con-
straints that o; = p,, or = K and T = D;/2+ Dy +
D, /2, where D;, Dy, and D; are the mean durations
staying at the mixture components v;, v, and v;, re-
spectively (Fig. 2). The mean duration Dy can be
approximated by Dy = 1/(1 — ag).

3) Synthesize noisy speech parameter vector se-
quence {0} by combining generated speech and noise
vector sequences in the same manner of the previous
section.

4) Calculate the sample mean of the noisy speech
parameter vector for the mixture component vy by

Tk = 202 ik ik / 2D aikar;  (6)
T g T 7
where

D; /24Dy
rhikj = Z 6t/Dk~ (7)
t=D; /2+1
Similarly, calculate my, i.e., the sample mean of the
generated clean speech parameter sequences for the
mixture component v;. Finally obtain the compen-

sated mean using (2).

4. EXPERIMENTAL RESULTS

To investigate effectiveness of the proposed technique,
we performed experiments on a speaker-dependent
33-phoneme classification task using ATR Japanese
Speech Database. The database consists of 5626 words
uttered by a male speaker (MHT). We used even-
numbered words in the database for training and odd-
numbered words for testing. Each phoneme HMM is
modeled by semi-continuous HMM (SCHMM) having
3 states with a VQ codebook size of 256. The topol-
ogy for all models was left-right with no skips. Thir-
teen mel-cepstral coeflicients including the 0-th coef-
ficient were used as the static parameters. The mel-
cepstral coeflicients were obtained by a mel-cepstral
analysis technique [10] on each 25.6ms frame of speech

Table 1: Phoneme classification rates in car noise.

SNR (dB)

Model set —-6] 0 ] 6 [ 12 18 ] 24

Clean 40.5 [ 56.0 | 68.4 | 76.0 | 80.0 | 86.4
Matched 70.4 | 82.2 | 86.9 | 88.7 | 90.9 | 91.7
PGC(Mean) 62.5 | 74.1 | 82.3 | 87.7 | 90.5 [ 91.8
PGC(Fix) 66.5 | 76.6 | 83.8 | 88.7 | 91.0 [ 92.6
PMC(Mean) 56.4 |1 69.8 | 79.5|8.8|895|91.4
PMC(Fix) 61.6 | 71.6 | 80.4 | 87.1 | 90.5 | 92.3
PMC(Var) 588 | 72.2 | 81.3 | 86.7 | 89.8 [ 91.5
DPMC(Mean) | 60.1 | 72.4 | 81.6 | 86.7 | 89.4 | 91.1
DPMC(Var) 64.0 | 76.0 | 83.8 | 88.8 | 90.7 | 91.7

Table 2: Phoneme classification rates for DPMC with
modified mismatch function in car noise.

SNR (dB)
Compensation | —6 | 0 [ 6 [ 12 ] 18 [ 24
Mean 60.9 | 73.2 [ 82.0 | 8.9 | 89.6 | 91.3
Mean + Var 67.6 | 774 | 84.5 | 88.5 | 90.0 | 90.8

sampled at 10kHz with a Blackman window every
10ms. We used only delta parameters Ac as the dy-
namic features in the experiments. Delta mel-cepstral
coefficients were calculated by (1) with L; =1, wq =
—w_1 = 1/2, and wy = 0. After the training of
the HMMs, the codeword index sequences for train-
ing data were obtained using the VQ codebook of the
SCHMMs. We used Mahalanobis distance as the dis-
tortion measure given by

d(os, i) = (0r — i)' U H(0s — ) (8)

where g, and Uy, are the mean and covariance of the
mixture component v in the VQ codebook, respec-
tively. Then the mixture transition probabilities were
calculated and stored for all possible codeword pairs.

Car noise or computer room noise from JEIDA
Noise Database was added to clean speech to generate
noisy speech data for testing. Noise was modeled by a
single state HMM. Diagonal covariance matrices were
used in both clean speech and noise models.

Table 1 shows the performance of the compen-
sated models using the proposed technique (PGC),
PMC, and DPMC for the phoneme classification task
in car noise. In the table, the entries for “Matched”
model are the results for the HMMs trained on noisy
speech data with the same SNR as the input speech.
The term “Mean” represents the mean compensa-
tion, and “Fix” means the use of a fized variance [1]
with the mean compensation. In addition, the term
“Var” represents both mean and variance compensa-
tion. We set all off-diagonal terms of the covariance
matrices of the noisy speech models to zero in all com-
pensation techniques. Moreover, we used DPMC in
a non-iterative fashion and with an assumption that
the statistics of S;_; and Ny;_; are approximately the
same as those of Sy and Ny, respectively.

It can be seen that similar classification perfor-



Table 3: Phoneme classification rates in computer
room noise.

SNR (dB)
Model set -6 ] 0 ] 6 |12 ] 18] 24
Clean 16.2 | 26.5 |1 40.2 | 54.4 | 66.0 | 74.9
Matched 489 | 64.1 | 77.3 | 85.5 | 89.8 | 91.5
PGC(Mean) | 32.0 | 45.8 | 61.4 | 74.3 | 84.2 | 89.3
PGC(Fix) 40.8 | 55.2 | 68.0 | 78.7 | 85.7 | 89.1
PMC(Mean) 27.1 | 40.9 | 55.0 | 68.7 | 81.0 | 87.8
PMC(Fix) 33.0 | 47.6 [ 62.0 | 74.0 | 83.6 | 88.4
PMC(Var) 321|449 | 58.7 | 72.2 | 83.2 | 88.7
DPMC(Mean) 28.5 | 42.9 | 57.8 | 72.2 | 82.2 | 87.7
DPMC(Var) 37.6 | 53.1 | 66.7 | 78.5 | 87.0 | 90.6

Table 4: Phoneme classification rates for DPMC with
modified mismatch function in computer room noise.

SNR (dB)
Compensation | —6 ] 0 [ 6 [ 12 | 18 | 24
Mean 28.7 | 43.2 | 588 [ 73.1 [ 82.6 | 874
Mean + Var 45.1 |1 589 | 71.7 | 81.9 | 87.6 | 89.7

mance is achieved in high SNR conditions. However,
in low SNR conditions, PGC provides higher perfor-
mance than PMC or DPMC.

Since it seems that the mismatch function used
in DPMC does not give good estimates of the delta
parameters, we modified here the mismatch function
for the delta parameters. We first generate a speech
observation and further generate static parameters of
the preceding and the following frames by

c.i=c—Ac¢, cy1=c+Ac (9)

where ¢ and Ac are the generated static and delta
parameter vectors, respectively. We next generate 3
noise observations independently and combine them
with {ec_1,¢,e41} to synthesize the noisy observa-
tions {€é_1,¢&,€é41}. Finally, we get the mismatch
function for the delta parameters by Aé = (é41 —
¢_1)/2.

Table 2 shows the results using DPMC with the
above mentioned mismatch function. It is shown that
further improvement of the performance is achieved
by the modification. It is also shown that the per-
formance of PGC with the mean compensation and
fixed variance is comparable with DPMC with both
mean and variance compensation.

Table 3 and Table 4 show the results in computer
room noise. It can be seen that similar results to
those in car noise are obtained.

The computational cost of PGC depends on the
VQ codebook size K. In SCHMM case, theoretically,
we have to generate K x K parameter sequences per
mixture component. However, the value of the tran-
sition probability a;rax; is equal to zero in most of
the mixture component sets. In fact, the average
number of generated sequences per mixture compo-
nent was 856 in the experiment with the codebook

size of K = 256. Furthermore, only slight perfor-
mance degradation was observed when the 100 most
significant transition probability mixture component
sets per mixture component were used in the param-
eter generation. Even if the top 50 mixture compo-
nent sets were used, the decrease in classification rate
was about 1% and the computational load was signif-
icantly reduced.

5. CONCLUSION

We have proposed a technique for compensating both
static and dynamic parameters of multiple mixture
HMDMs in noisy environments. The approach is based
on cepstral parameter generation from HMM. The
effectiveness of the technique has been investigated
by phoneme classification experiments. Although the
proposed technique requires the additional informa-
tion of the mixture transition probability, it is a sim-
ple and easy task to obtain that information.
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