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Abstract

This paper describes 2 novel architecture and algorithms for
combining stochastic modeling and Natural Language Understand-
ing techniques to help speech recognition and understanding. In this
system, an utterance is initially processed by a speech recognizer
using a standard class bigram language model to produce a smﬁ}e
best scoring word string.” This word string is then parsed by the
Phoenix parser [1], which produces a semantic frame. The parser
uses Recursive Transition Networks 10 represent semantic frag-
ments, or word strings which are meaningful to the system. Seman-
tic fragments of the utterance are assigned to clots in frames.
Semantic, pragmatic and discourse knowledge is then applied to the
parsed frame to identify misrecognized substrings and develop con-
tent predictions for the misrecognized regions. For this, we compute
within utterance semantic constraints, constraints arising from
speech repair acts (e.g. on-line edits and corrections) as well as

1alog-based constraints arising from different types of sub-dialogs
(or what have traditionally been called discourse and domain plans)
and the content of prior inputs and system responses. The predic-
tions correspond to a small subset of the semantic networks known
to the system. The region boundaries of the input along with the set
of predicted semantic networks are passed to a Recursive Transition
Network speech decoder which uses them in re-recognizing the
specified region of the utterance. The networks used by the RTN

ecoder are the same ones used by the parser. Only the predicted
subset of nets are used in the re-recognition. We describe our
algorithms for detecting misrecog_}"xitions and generating ﬁ:edlczlons
as well as the operation of our RTN-based recognizer. e system
was trained on training data from the ARPA Air Travel Information
Service (ATIS) task, and tested on an independent test set of 1000
utterances.

1. Introduction

Spontaneous speech is both acoustically and grammatically chal-
lenging to recognize. Acoustically, you encounter filled and silent
pauses, human and environmental notse, stutterring and truncated or
partial words. Grammatically, spontaneous speech contains mid-
utterance corrections and verbal edits {2, 3], out-of-vocabulary
words, meta level comments, dﬁ"sﬂuencies, ungrammatical construc-
tions and partial utterances. While traditional grammar based (Finite
State, LR, Recursive Transition Network) recognizers have been
used successfully for decoding read speech, the standard implemen-
tations are less successful for spontaneous speech. They are less
robust than stochastic language model recognizers to the disfluent,
ungrammatical and verbaﬁy corrected” utterances encountered in
sgontaneous speech. These difficulties are primarily caused by the
challenge of ‘generating grammatical rules that cover commonly
occurring spontaneous phenomena. It is very difficult to generate
rules that provide good coverage of the word sequences people
produce when speaking spontaneously.

Stochastic language models are more robust to unseen word
sequences since Lﬁey can be smoothed and their scope is short
encugh to allow search realignment after an error. However,
stochastic language models may provide a poor mawch with the
Natwral Language understanding portions of the system. They do
not enforce al:g.)licable syntactic, semantic, pragmatic and dialog
constraints, and often produce word strings that can’t be parsed by
standard NL parsers. Some success in understanding spontaneous
speech has come from using stochastic language models to decode
an utterance and then using a flexible Natural Language parser to
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process the decoded string [4, 3, 1]. This is a loosely coupled sys-
tern, in that the recognizer and parser use different language models.
While this provides robust decoding, it does not take advantage of
the longer span constraints provided by the rule based grammars,
and misrecognitions may still cause parser errors. The system
described and evaluated in this paper is designed to cope with
spontaneous speech phenomena. It uses both stochastic and rule-
based knowledge and attempts to achieve compatibility between the
recognition and understanding functions of the system while remain-
ing robust to unexpected input.

2. System Architecture

The system uses a two-pass architecture. On the first pass a
word-class bigram based decoder is used to f)::roduce the single best
word string hypothesis. This pass is both efficient and robust, but is
likely to have minor errors. The output word string is parsed by the
Phoenix parser into slots in a semantic frame. Portions of the mput
which can’t be accounted for by the parser are left out of the parse.
The parser output and the hypothesized word string are then
analyzed to determine possible misrecognitions by the Minds-II sys-
tem.

This system keeps track of all preceeding interaction (user input,
system responses and changes in screen display). When a strinf of
words is flagged as being f1:>ot::zmially misrecognized, Minds-II
generates content predictions for the potentially misrecognized sub-
string. These predictions are derived from the current ap%licable
context, inferred speaker goals and plans, the dialog history,
senience-level semantic constraints and applicable discourse plans.
The predictions specify the most likeéy concepts that should have
been in the region of speech corresponding to the word string. These
concepts correspond to a set of slot networks used by the parser.
The system can also generate predictions to restrict the expansion of
(sipcci ied networks. These predictions would generally arise from

ialog context.

For example, consider the mis-recognition of flight numbers in
an airline trave] task, such as substituting U § 150 for U S 115. Both
of the strings are legitimate flight numbers and therefore seman-
tically and pragmatically consistent. However, if the utterance hap-
pened to be in context where the user was looking at a list of flights
containing U § 115 but not U S 150, we have a mechanism to restrict
the network jlight_number to only those flights in the current list.

As illustrated in Figure 1, prediction based net restriction is done
by taking advantage of the representation. In our compiled
networks, a call arc (one that represents a call 0 another network)
simply contains the number of the network being called. We have an
array which contains the start address in memory for each network,
and the address to jump to is found by indexing into this array. In
order to restrict the expansion of a given net, we dynamically com-
pile a version which contains only the desired strings and use it for
re-reco%mzmg the potentially misrecognized word string. The ad-
dress of the new net then temporarily replaces the original address
for the network in the index array, so that whenever the net is called,
the new version is used. en the constraints on the net are
drodpgled. the old address is written back into its index in the array
and the space for the new net is freed.

In the second pass, the predictions and starting and ending times
for the region are passed to a second recognizer. This recognizer
uses Recursive Transition Networks for its language model, and will
only produce sequences of words allowed by tﬁe networks. Only the
predicted networks are used in the decoding, so this is a low
perplexity search that will produce a string of words acceptable to
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American
Net Pointers

Flight_Num

Eastern 210, Delta 50

Flight List:

Figure 1: Dynamically Derived Net Restrictions

the parser or noLhini at all. The concept netwarks are matched only
against the specified region of the utterance. The output from the
rerecognition is then used to replace the original misrecognized
string and inserted into the parsed frame.

3. Identifying Misrecognized Strings

The system uses a number of techniques to analyze the current
word string hypothesis and parse to try to detect errors. These can
be parse errors (5] or recognition errors. Basically, the system relies
upon domain semantics, abductive reasoning, constraints derived
from prior discourse including contextually appropriate subdialogs
and topic changes as well as_constraints upon current topics of
discussion and objects and attributes available for reference. To do
this, the system employs three data structures, a frame-based
knowledge base, a domain plan tree for inferring and tracking
speaker goals, plans and plan fajlures [6], and a focus stack. The

omain tree and focus stack are also used by the discourse model for
tracking discourse plans [7]. The discourse model determines the
types of subdialogs that can be initiated at 2 given point in the
interaction and computes contextual constraints upon their content
[8]. The system” uses it semantic, pragmatic and discourse
knowledge to correct parse errors and semantically or pragmatcally
inconsistent recognition errors. It cannot detect semantically consis-
tent misrecognitions such as:

Iwould like information on ONE WAY flights from
Boston 1o Pint

I would like information on MONDAY flights from
Boston to Pitt

The system generates a set of constraints that the error-ful ut-
terance must fulfill. In some cases, the constraints are restrictive
enough to permit the system to correct an error without rerecog-
nizing any portions of the utterance. This usually occurs when an
object is misrecognized and substituted for a similar object that is
not available for reference. This is common with flight number
misrecognitions or clarifications of objects / attributes presented in
the last database answer. If the system substitutes a not-available-
for-reference item and there is only a single, similar item that is
contextually appropriate, the system can correct the substitution er-
ror. For the rest, predictions are generated to guide the rerecog-
nition.

Rerecognition predictions are used to guide the second-pass
recognition of substrings of the original recognized output utterance.
Not only parsed words can be sent for rerecognition. Words in the
word string hypothesis which are left out of the parse are candidate
for éerccognition, as long as they aren’t isolated short function
words. :

In order to perform 2 correction, either with our without rerecog-
nition, the system looks for semantic and pragmatic inconsistency at
both the utterance and discourse level. Within an utterance, each of
the phrases and words must modify or complement one another.
Across utterances, contextual constraints on what is referencible,
what subjects are available for discussion, and what types of sub-
dialogs can be initiated must be adhered to. Plan wee traversal
heuristics {9] that indicate what topics are available for discussion
and reci‘pisite ordering among topics or plan steps must not be vio-
lated. For example, a subtree or plan step must be completed before
another is begun and completed plan steps should not be repeated in
the absence of a plan failure or a correction subdialog. Semantic and
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pragmatic consistency is computed primarily by a‘gglging abductive
reasoning and constraint satistaction techniques. uctive reason-
mﬁ is used to evaluate consistency within the hypothesis. It decides
which phrases modify one another and how they can be combined to
form one or more meaningful utterances. Essentially, the process
uses the representations of identified knowledge base entnies and
determines the ways in which they can be related to one another,
while maintaining consistency among the entire set of entries. This
knowledge is used in conjunction with constraint satisfaction to
determine referencible objects and to compute those objects actions
and attributes that are currently in focus or contexmually appropriate.
To determine which portion of an utterance (if any) is most likely to
be inaccurately recognized, the analysis routines try to build the best,
most encompassing semantically and pragmatically consistent
representation of an utterance. It takes into account heuristics for
processing restarts and mid-utterance corrections and tries to build a
single semantic representation of an unterance, identifying the least
number of semantic objects or attributes that are inconsistent.

The conceptual analyzer not only determines what possible
phrases compose a meaningful request or statement, it also identifies
combinations of meanings which violate domain constraints. These
constraint violations include both !Ype constraints of objects and
attributes and n-tuple constraint vioiations. In helping to identify
mis-recognitions, these constraints assist in determining whether

ortions of a hypothesis can reasonably modify one another. To
illustrate the use of constraints, consider the following rule for long
range transportation taken from the current knowledge base:

Long Range Transportation

Objects:
vehicle long-range vehicle,
origin location,
destination location
objects-transported  object
Relations:

origin - destination

Here we have constraints on the type of objects that may fill these
roles and relational constraints, In this exa.mgle. relational or tuple
constraints put restrictions on the relationship between the origin and
destination slot fillers.

In the context of a dialog, we use the state of the world, dis-
course structure constraints, inferred current goals and plans, and a
current focus stack. We detect inconsistencies between the current
parse and these global structures.

4. Generating Predictions

The mechanisms used for predicting concepts in a misrecog-
nized region as similar to those used for detecting the misrecog-
nition. Those that rely only on information within the utterance are
constraint satisfaction in conjunction with abductive reasoning and
basic syntactic knowledge of constituents and attachment. These are
general, domain independent techniques which rely upon a domain
specific knowledge g:sne. The system begins by hypothesizing
which entities and actions in the remainder of the hypothesis the
identified region could modify. This process relies primarily on
syntactic knowledge. Next, it uses the domain knowledge base and
constraint satisfaction techniques to hypothesize reasonable semantic
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values that the region could take. To determine the meaning of an
unknown region of input, the reasoning component searches the
knowledge base to determine the most general, contexmally zzg-
propriate concepts that are consistent with the other concepts in the
utterance.

Conceptual analysis also helps determine possible meanings for
a misrecognized phrase by eliminating and bounding dposs1ble
hypotheses. The system generates a set of hypothesized phrase
meanings for each portion of an utterance marked as misrecognized.

When the utterance is in the context of a dialog, the hypothesis
set can be further constrained. The additional constraints arise by
computing consistency with the state of the world as represented in
the dialog model. The stack of goals and plans, along with domain
independent properties of dialog structure are used to compute con-
sistency and to determine whether any portion of an utterance is
highly improbable.

Here, the system begins by identifying the discourse action
(continue plan, clarify last database response or last utterance, con-
firm contents of plan subtree, etc.) likely to be executed based upon
the "undisputed” information in the utterance. This step rarely
results in any ambiguity ragarding discourse plans, although oc-
casionally multiple hypotheses for continuing the current domain
plan step must be maintained. Once the subdialog or applicable set
of domain plans being executed have been identified, the system
looks for constraints upon these plan steBs that have been propagated
and inferred from prior interaction. For example, a estnation,
origin and tme constraint may have been previously specified.
These constraints are propagated and will also constrain the objects
that satisfy those constraints, for example a set of applicable flights.
These constraints are then used to refine the set derived from the
utterance alone to determine the final set of criteria the rerecognition
predictions must fulfil. These predictions are then translated into
semantic nets and constraints upon those nets (as illustrated in
Figure 1) and used to guide the rerecognition process.

5. Semantic Decoding

We have develog?d a speech recognition system which uses
Recursive Transition etworI?s as a language model to control word
sequences searched for when decoding an utterance {10). In par-
ticular, we use the semantic fragment networks used by the Phoenix
parser.

The Phoenix systemn uses Recursive Transition Networks to
represent patterns for semantic fragments. A network specifies those
word strings that represent the same concept, and is generated from a
semantic grammar. The parser uses the patterns to fill slots in
semantic frames. Unlike most RTN systems, our top-level RTN
patterns don't generally march entire sentences, but sentence frag-
ments that have a fpa.r:icular meaning. For example, all word se-
quences that specify a depart location would be a single network,
and those spec1f?'ing an arrive location would be a different network.
The utterance "I want 1o see flights from Boston to denver after 5

m"” would be the concept sequence [list] [select_field]
ffrom«location] [to_location] Fdepart_lime_range]. The system
searches for a sequence of concepts, where word sequences con-
stituting concepts are specified by RTNs. Since these RTNs are the
same ones used by the Farser, it will only produce strings that can be
parsed, or nothing at all,

The Sphinx I system [11] was used as the basis for the recog-
nizer. This system uses discrete Hidden Markov Models to represent
context dependent phone models. Word models are generated by
concatenating the agpropriate phone models. A time-synchronous
Viterbi beam search’is used to match sequences of word models
against the input. The original Sphinx system uses bigrams to model
the word sequences. We modified the gphinx recognition search to
use RTNs to determine word transitions.

In our two pass system, the original Sphinx system produces the
hypothesized word strinlion the first pass.” OQur RTN decoder is used
for the rerecognition in the second pass.

6. Results

We evaluated the effectiveness of the rerecognition methodol-
ogy on spontaneous spoken utterances using three official DARPA
test sets. Specifically, we compared the performance of the standard
Sphinx-1 bigram system with the two-pass, RTN-based system. The
same lexicon, phone models and word-bigrams were used by both
systems.

The systems used a lexicon of approximately 1800 words, in-
cluding ten non-verbal events. The word-class bigrams were trained
on approximalel¥1 12000 utterances taken from the DARPA ATIS2
training set, and have a perplexity of approximately 55. There are 79
concept nets. Trigram probabilities of sequences of concepts were
also trained on the same set of utterances as the word bigram.
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Show flights
from Boston then for

[List] show
[info] flights

[Depart Loc] from
[City] Boston

Figure 2: Sample Parser Input and Qutput

The results show the reductions in utterance error rates that
result from using the two-pass RTN system. Utterance error rate
measures whether the system correctly interpretted the meaning of
the spoken input as reflected in the database queries and answers
output by the system’s backend. Specifically, the utterance error
rate is the percentage of utterances that did not produce the correct
answer from the database. In other words, utterance error rates
reflect both word error (the sum of word substitution, deletion and
insertion percentages) and understanding error (the system's ability
to infer the meaning of the recognized words).

Both systems processed all of the dialogs in each of the test sets.
The parses from each spoken utterance were passed to our ATIS
back end, which parsed the string and produced a response from the
database. The DARPA test sets randomly assess performance on a
subset of the input uiterances, ensuring that "Class X" queries, or
those queries for which there is no reference answer, are not in-
cluded. As shown in Table 1, the numbers of utterances evaluated in
the respective subsets were 889, 287 and 76, or a total of 1252
utterances were evaluated.

Tables 1 and 2 break overall error rate down into contextually
consistent and contextually inappropriate word recognition errors.
The current two-pass system cannot detect contextually consistent
word substitutions. Contextual appropriateness is defined in terms
of the discourse plans that can be executed at a specific point in time
(e.g. clarify, confirm, correct, continue), the objects, attributes and
actions available for reference, and the plan steps that are active.
For example, if a flight number is misrecognized and substituted for
another flight number that filfills the same semantic constraints
Frevxousl specified in the dialog (i.e. both go to the same place /
eave at the same time / serve a meal, etc.) it is considered to be a
semantically consistent recognition error and cannot be detected by
the semantic, pragmatic and discourse knowledge available in the
current two-pass system. As seen in Tables 1 and 2, 41.6% of all
recognilion errors, are semantically consistent, accounting for a
mean 10.4% overall error rate. These contextually consistent errors
can only be detected using acoustic confidence metrics (e.g. [8]).

The majority of errors are contextually inappropriate, and it is on
these errors that we can measure the sensitivity of the semantic,
pragmatic and discourse knowledge and evaluate the strengths and
weaknesses of the approach. As seen in Table 1, the system can
both detect (de!ectedp errors) and generate accurate predictions
(correct predictions) for most of the semantically inconsistent errors.
The wwo pass system generated correct predictions for 88% of the
contextually inconsistent errors, correctly predicting semantic con-
tent and translating the predictions into’ 2 recognition lexicon and
grammar. In other words, the system generated accurate content
predictions for more than 50% of the total errors. However, the
system was only able to correct approximately 50% of the errors it

etected, resulting in an overall error rate reduction of roughly 30%.

As seen in Table 2 and described above, the system can correct
errors using two methods: knowledge-based constraint alone (%
corrected without rerecognition) and rerecognition. In both cases,
the system generates a smenatically and pragmatically constrained
lexicon and” grammar. However, in some cases, the contextual
constraints are strong enough to permit an accurate word string to be
substituted for a recognition error without performing rerecognition.
The system was often able to correct a recognition error using the
semantic, pragmatic and discourse level constraints alone. In such
cases the context and knowledge-based constraints were enough to
select among competing word string altemnatives. In fact, the percent
of errors the system is able to correct remains roughly equivalent
across test sets, even though the relative percentages corrected via
rerecognition and by using knowledge-based constraints alone
varied. This finding has implications for why Terecognition was not
always successful, as discussed below.
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Test Error Initial Detected Correct Errors Final
Set Type Error Errors Predictions Corrected Error
Nov 92| Bad Context 11.81 10.46 10.01 6.19 5.62
N=889 | Total Error 20.58 10.46 10.01 6.19 14.39
Oct 91 Bad Context 22.65 20.91 18.82 9.06 13.59
N=287 Total Error 38.33 20.91 18.82 9.06 29.26
Feb 91 Bad Context 25.00 25.00 21.05 10.53 14.47
N=76 Total Error 38.16 25.00 21.05 10.53 27.63
Table 1: Errors Rate Reductions from Re-recognition
% Errors
Test Context % Errors Correct Corrected Correct Total
Set Violations Consistent Preds. w/o Rerec. Nets Rerec. Corrected
Nov 92 11.81 8.77 10.01 2.47 754 3.71 6.19
Oct 91 22.65 15.68 18.82 4.18 14.63 4.88 9.06
Feb 91 25.00 13.16 21.05 6.58 14.47 3.95 10.53
Table 2: Breakdown of Correctible Errors
References

Even though the system was able to correctly generate content
predictions for most o¥ the semantically inconsistent errors, it was
not able to correct all of the errors. In fact, even though the two-pass
system generated accurate, low perplexity, content predictions for
the misrecognized substrings, substring re-recognition accuracy was
less than 50%. We beliceve this is a result of two factors. First, it is
likely that the misrecognized substrings are more acoustically con-
fusible and harder to recognize than the correctly recognized or
re-recognized input. The fact that these word strings were misrecog-
nized initially points to this fact. Also, the relative invarinace in the
total percent of semantically inconsistent errors corrected in spite of
the fact that some could be corrected on the basis of semantic and
pragmatic constraints alone supports this conclusion. Further, there
were not significant differences in the perplexities of the prediction
sets that resulted in successful vs. unsuccessful re-recognitions.
Second, it is possible that there are subtle differences between recog-
nizing a substring and recognizing and entire utterance that we have
not considered.

Overall, we were able to signiﬁcantl{ enhance recognition usin
our two-pass system, reducing overall error rates IB'] 30% ang
generating accurate, low perplexity gfedictions for virually all of the
semantically inconsistent errors. owever, we were not able to
correct two types of errors, sematically consistent errors where per-
fectly acceptible, meaningful misrecognitions were substituted for
actual spoken words, and recognition errors caused by highly con-
fusible acoustic patterns.
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