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NEW BACKPROPAGATION ALGORITHM USING QUADRA TIC POTENTIAL 
FUNCTIONS, AND AN EXPERIMENT ON ISO LA TED WORD RECOGNffiON. 

ENRIC MOI"HE, EDUARDO LLEIDA, JOSE B. MARINO. 

DPTO. TEORIA DE LA SENAL Y COMUNICACIONES, UNIVERSlOAD POLITECNICA DE CATALUNA 
SPAIN. , 

ABS1RACf. 

This paper presents a new algorithm to train 
multilayered perceptrons, u sing q uadr atical 
potential functions. This new algorithm is 
compared in an isolated word recognition task, 
with the back propagation algorithm that uses 
linear combinations of the inputs. Some pattern 
recognition techniques are also used to reduce the 
dimensinality of the input pattern in order to 
reduce the computational burden of the training 
and the recognition. The algorithm that uses 
quadratic potential functions yields better results 
in the recognition task. 

1 INTRODUCfiON 

ln this paper we propese a new algorithm, to teach 
multilayered classiliers, and we will compare the back 
propagation algorithm using quadratical potential functions 
with the traditional back propagation algorithm (1),(3). This 
algorithm is based on the use of quadratical potential functions 
(4) instead of hyper planes in the hidden units. The reason for 
choosing potential functions is due to the fact !hat the 
multilayered perceptron needs a great number of hidden units 
when the classes to be classified form closed surfaces in the 
space of the inputs , and the distribution of the classes is not 
gaussian. This paper also compares the traditional multilayered 
perceptron, with linear decision surfaces, with the new 
algorithm; the comparison is done on the experiment of the 
r<Jcognition of the catalan digits. Pattern recognition techniques 
are used to reduce the dimensionality of the test signals. This is 
due to the fact that the set of frames of the digits alter the 
preprocessing was excessively long: 30 frames of 8 parcor 
coeffients each; so it was decided to do a feature selection 
through orthogonal expansion of the digits (2), in order to 
reduce the dimensionality of the input patterns, this orthogonal 
expansion reduced dimensionality in time, representing each 
digit with three frames only. ln this way the dimensionality of 
the input vector was reduced from 240 real numbers to 24 real 
numbers. 

2 THE QUADRATICAL BACKPROPAGATION 
ALGORITHM. 

. . . . First of all, we are going to give a geometrical 
JUS.tlfl?atl?~ o.l the .algorithm that is presented in this paper. 
Th1s JUSIIflcallon Will show that for a fixed number of hidden 
units, the backpropagation alaorithm that uses quadratical 

potential functions in the hidden units yields a better 
classification performance. II must be emphasized that the 
following is a justification, not a demonstration; nevertheless, 
the experimental results confirm the assumptions that are 
made. 

ln the case of multilayered networks, where the 
units combine linearly the inputs, the hidden units form the 
hyperplanes (if the input vector is of dimension two as in the 
following example, it will be lines) that are used to close the 
part of the plane that has to be classified as a separate class. As 
~t is shown in the ligure 1, the outpul units, classify the class 
11 the point at the input is inside the area that is surrounded by 
the lines. 

output=f(WT in_vec) (1) 

ouput:f(in_vec T Ain_vec+b T in_vec+c) (2) 

Where: A: is a weight matrix 

b: is a weight vector 

c: is a weight scalar 

network. 
in_ vec; is thc in pul data vector to the 

W: is a weight vector. 

Figure 1: The elipsoid is the decision boundary of 
the class and the lines are the decision boundary 
generated by a multilaycred pcrceptron. 
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As it can be seen in Figure1, in order to 
represent the decision boundary with lines, we need as 
many lines as points of the surface, which means that 
we need a network with an infinite nurober of hidden 
units. If instead of using units with a transfer function 
as shown in 1 we use units with transfer function that is 
a potential function of the input as shown in 2, each 
hidden unit will generate a closed desicion boundary. 

In the case of units that use this kind of functions, 
the classification boundaries shown in the figure 1 , 
which correspond to an elipsoid can be done with only 
one unit in the hidden Iayer. 

This kind of algorithm is best tailored to problems 
where the surfaces to be classified are closed, and 
complicated. In this case the nurober of units in the 
hidden Jayer should be much Jower in the quadratical 
case than in the back propagation algorithm with units 
that combine Iinearly the inputs. Of course the 
dimension of the input vectors must not be too high, 
because the nurober of weights in each unit grows 
quadratically. Nevertheless the experiments that we 
have done, show that when the dimension of the input 
vector is high, the linear back propagation algorithm 
converges to a solution after a nurober of iterations 
prohibitive in CPU time. So any way the quadratical 
backpropagation algorithm behaves better than the 
linear back propagation algorithm when the decision 
boundaries are complicated. 

DERlVATION OF THE TRAINING ALGORITHM FOR 
NETWORKS WITH UNITS THAT USE QUADRATICAL 
POTENTIAL FUNCTIONS. 

Let J be the cost function of a multilayered 
classifier defined as follows: 

(3) 

where np: is the number of presentations. 

I 
r np: is the reference signal for the outpul i. 

I 
Ynp: is the outpul of the network. 

We will use a gradient search technique to find 
the minimum of the cost function J. The recursion used 
for the actualization of the weights is the following: 

W
1}np + 1) = W 1

1(np) + E • aJ/am 1J + 

a • (m 1

1
(np)- tLJ 1/nP- 1)) 

(4) 

where: 
the node 

."fj(np) 
: is the weight between the node j and 

at the np iteration. 

E · is the adaptation step. 

<X: is the momentum. 

It must be noted that when we talk of the umt J; I! 
can be a unit at the outpul Iayer or at a hidden layer; for 
each case, the way of computing the value of the 

d. aJ/aw
1
J 'II b · d' d gra tent w1 e m tcate . 

From now on: y 1 will mean the input vector to the 

node i ; and H I the outpul of this node; Y I will be 

Y1 = f(H 1), where f(.) is the sigmoid function. 

The relation between H I and Y 1 is 

T T 
H I= y IRY + B y I+ c (5) 

In order to find a minimum of the cost function 
we will have to calculate three different kinds of 

A, the one with the vector B and the one with the scalar 
c) which are: 

ll. ) aJ/aa
1

J : gradient of the term 
the unit i. 

I of the matrix A of 

lL) aJ/ab
1

1 : 

unit i. 
gradient of the term of the vector B of the 

s;_ )aJ/ac1
: gradient of the scalar c of the unit i. 

The general de derivation of the expression of the 
gradient of J with a weight is the following: 

aJ/am = aJ/aH. aH/am (6) 

aJ/aH = aJ/ay. aylaH (7) 

aJ/ayl has a different expression which 
depends on wether the unit is an outpul unit or a hidden 
unit. 

If the unit is an outpul unit we have: 

aJ/ay1 =- 2(r1
- y1

) (8) 

If the unit is a hidden unit then we have: 

n_r 
aJ/ay' = :L,aJ/a"k • a"k /ay1 

k=l (9) 

where n f: is the number of units in the next 
layer. 

If we derive the equation 5 we get: 

n_f n_f 

aJ/ay 1 = :L,aJ/Hk • (2ü ~~y 1 + I.a ~y 1 + b~) 
k=l 1•1 (10) 

The term corresponding to aH/ay is quite 
straitforward, because y is related with x by a sigmoid; 

a1-1/ay = y(l- Y) (11) 
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a) For the terms related with J!.: 

The elements of the diagonal of the matrix A. 

(12) 

For the elements that are outside of the diagonal 
(the matrix A is a symmetric matrix) 

( 13) 

b) c) For the terms related with h. and !<_: 

(14) 

(15) 

At this moment we have all the terms that are 
needed, to teach the network. The complete algorithm is 
shown in Table I. 

TABLEI 

LOOP: For all the training patterns 

-Present at the input a training pattern an 
examine the output. 

-Calculate: oJ/oyl for all the output units, with 
the equation (8). 

For each outpul unit: 

-Calculate oJ/oH
1 

- For the weights: A, B, c calculate the 
derivatives respect to each weight: i.e. 

derivative respect matrix A: oJ/oa
1
,ii 

aJ/ob
1
J 

derivative respect vector B: 

derivative respcct scalar c: aJ/oc
1 

For the previous layers: 

At the layer i calculate oJ/oyi with the equation 

(10), where the term oJ/oHk is a term of the unit k of 
the next layer. 

The derivatives of the weights are calculated in 

the same way once the term oJ/oyi is known, and the 
weights are updated again using the equation: (4). 

3 RECOGNITION EXPERIMENTS 

Test data base 

A data base cons1stmg of ten repeuuons uttered 
by seven male and three female speakers (1000 words) of 
the Catalan digits (table II) recorded in a quite room 
were used. 

1/U/ 
5 /sink/ 
9 /nou/ 

2 /dos/ 3 /tres/ 
6 /sis/ 7 /set/ 
0 /zeru/ /seru/ 

4 /kwatre/ 
8/vuit/ /wuit/ 

table II. Pronunciation of the Catalan digits. 

Preprocessing 

The speech signal was samplcd at 8 KHz, pre­
emphasized and the beginning and end of every 
utterance were detected automatically by means of an 
algorithm based on the signal energy; 8 Log-Area 
coefficients were computed each 15 ms. using frames of 
30 ms. of the speech signal. A typical Hamming 
smoothing window was applied to the data .. After the LPC 
analysis, the parametrized frames are normalized to a 
fixed number N of frames, being N equal for all the 
digits. 

Orthogonal Expansion 

The input signal, which is formed by a secuence of 
N frames, each one with P (8) parcor coefficients, is too 
long to be used efficiently in a multilayer classifier. So it 
was decided to use pattern recognition techniques to 
reduce the dimensionality of the input pattern. This 
reduction in the dimensionality was obtained by the use 

of an orthogonal expansion of the set of input frames. 
The following lines explain the method that was used. 

Given a NxP matrix Y of Log-Area parameters 
representing N frames, we can find a finite family of 
orthogonal functions, which represent the time 
evolution of Log-Area parameters, by means of the 
Principal Component Analysis of an average of the 

T 
matrix YY of each vocabulary ward (2). Thus, given an 
input template of NxP, the new template of MxP 
dimension is computed using M orthogonal functions, 
where M is less than N. In our system, N is 30 frames and 
the Optimum value of M, which gives the least 
recognition error in a classical pattern recognition 
approach (1) is 3. 

EXPERIMENTSANDTOPOLOGY 

The recognition was done 
of them was trained using 
propagation algorithm introduced 
other one was trained using 
algorithm, which is described in 

with two networks; one 
the quadratical back 
in this paper, and the 
the back propagation 

(1). 

As it is well known thc perfomance of back 
propagation type algorithms depend on the values that 
are given to the adaptation step and the momentum. On 
our experiment we trained the linear back propagation 
algorithm with several values of these two parameters 
and found that the best results were obtained when we 
took the adaptation step as 0.3 and the momentum as 0.8. 
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We followed the same procedure for the quadratical back 
propagation algorithm and found that the best 
parameters were 0.1 for the adaptation step and 0.3 for 
the momentum. 

The topology of the network was with 16 units in 
the hidden layer for the back propagation algorithm 
presented in (I) and of 8 units in the hidden layer for 
the quadratical backpropagation. The reason for it, is 
that the new algorithm works better than the old even 
with a lower number of units in the hidden layer. 

In this paper we are going to compare the 
recognition results of the two algorithms when trained 
with a limited number of iterations. 

The training of each network was done with the 
nine speakers of the data base, and the recognition 
scores were obtained with the speaker that was left out 
of the training. In Table III the perfomance of the two 
algorithms are compared for a training of 50 
presentations; where each presentation is defined as the 
training of the network with a sample of each digit. 
Each rea1ization of each digit was taken at random. The 
perfomance is measured as the number of errors that 

the network makes, when trained with a number of 

CONCLUSION presentations. 

In this paper we present a new algorithm to train 
mutilayered networks. This algorithm uses quadratica1 
functions instead of a linear combination of the inputs. 
In this way, the number of hidden units that are needed 
to classify classes were the decision boundaries are 
closed and complicated is reduced and the training time 
is also reduced. The algorithm that we present in this 
paper, yields a better perfomance: i.e. the convergence 
rate is faster and the recognition accurancy is beter 
with a lower number of hidden units; than the linear 
back propagation algorithm, when used in the digit 
recognition problem. In this paper, we also present the 
use of an orthogonal expansion of the parametrized 

voice signal, to reduce the dimensionality of the input to 
the network, and thus the computational burden of the 
recognition process. The combination of the two 
techniques: the quadratical units and the orthogonal 
expansion, gives better recognition results. 
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Pattern Recognition 

TABLE 111 

N :number of presentations. 

S: speakers 

Recognition rate (%) with the linear backpropagation 
a1gorithm. 

N\ S 0 2 3 4 5 6 7 8 9 

50 0 ll 18 2 25 43 4 19 13 21 

100 0 6 30 2 20 34 12 0 10 14 

Recognition rate (%) with the back propagation 
algorithm using quadratical potential functions. 

N\S Q 2 ::! 4 5 Q 7 8 9 

50 3 8 15 5 1 IS 4 8 11 l(i 

100 0 3 5 5 10 4 2 3 


